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Abstract

In this paper, the estimate for growth of homeomorphic solutions of the Beltrami equa-
tion at infinity is obtained, provided that the dilatation quotient has a global finite mean
oscillation.
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1 Introduction

Let D be a domain in the complex plane C, i.e., a connected and open subset of C,
and let v : D — C be a measurable function with |u(2)| < 1 a.e. (almost everywhere)
in D. The Beltrami equation is the equation of the form

fE = M(Z)fz (1)

where fr = 3f = (fu +if,)/2, fo = Of = (fu —if,)/2, = = 2 + iy, and f, and f,
are partial derivatives of f in z and y, correspondingly. The function y is called the
complez coefficient and

1+ |p(z)|
1—|p(2)]

the dilatation quotient for the equation (1). The Beltrami equation (1) is said to
be degenerate if esssup K, (z) = oo. The existence theorem for homeomorphic Wli)cl
solutions was established to many degenerate Beltrami equations, see, e.g., related
references in the recent monographs [3], [10], [7]; cf. also [6], [14] — [18].

Recall that the (conformal) modulus of a family I" of curves «y in C is the quantity

Ku(2) = (2)

M) = inf /pQ(z) dx dy (3)

p€admI
C



where adm T is the class of all Borel functions p : C — [0, o] such that

/pds>1 V~yel, (4)
8!

where s is the arc length parametrization of .
Throughout this paper,

B(zp, 7)) ={2€C:|z— 2| <r},

S(z0, 1) ={2€C:|z— 2| =r},

and
A(zo,m1,7m2) = {2z € C:r; < |z — 2| <r2}.

Let E, F C C be arbitrary sets. Denote by A(E,F,D) a family of all curves
v : [a,b] = C joining E and F in D, i.e., v(a) € E,v(b) € F and v(t) € D as
t € (a,b).

Here a condenser is a pair £ = (A,C) where A C C is open and C is a non-
empty compact set contained in A. £ is a ringlike condenser if B = A\ C is a ring,
i.e., if B is a domain whose complement C \ B has exactly two components where
C = C U {oo} is the one-point compactification of C. £ is a bounded condenser if A
is bounded. A condenser £ = (A, C) is said to be in a domain G if A C G.

The following lemma is immediate:

Lemma 1.1. If f : G — C is a homeomorphism and £ = (A, C) is a condenser in
G, then (fA, fC) is a condenser in fG.

In the above situation we denote f€ = (fA, fC).
Let £ = (A, C) be a condenser. We set

cap& =cap (4,C) = ueiWnof(E) / |Vu|? dedy

and call it the capacity of the condenser £ . The set Wy (E) = Wy(A, C) is the family
of nonnegative functions u : A — R such that v € Cy(A), u(z) > 1 for z € C, and u
is absolutely continuous on lines (ACL). In the above formula,

ou\ 2 ou\
Vu| = — — | .
vy (5) + (52)
We mention some properties of the capacity of a condenser. It was proven in
([20], Theorem 1) that

cap& = M(A(0A,0C; A\ (), (5)

where A(0A,0C; A\ C) denotes the set of all continuous curves joining the bound-
aries 94 and 0C in A\ C.



Moreover, the following estimate is known:

4
08 Wm(0)

cap€& >

(see, e.g., (8.8) in [11]).

The following notion is motivated by the ring definition of Gehring for quasicon-
formal mappings, see, e.g., [5], introduced first in the plane, see [17], and extended
later on to the space case in [13], see also Chapters 7 and 11 in [10], cf. [1], [2], [4],
[12].

Given a domain D in C, a (Lebesgue) measurable function Q : D — [0, 00],
29 € D, a homeomorphism f : D — C is said to be a ring Q—homeomorphism at the
point zq if

M (f (A (51, S2, A(z0,71,72)))) < / Q(2) - n*(|z = z0|) dwdy  (7)

A(zo,71,72)

for every ring A(zg,r1,72) and the circles S; = S(zg,7;), i = 1,2, where 0 < r; <
re < ro: = dist (29,0D), and every measurable function 7 : (r1,72) — [0, 00] such
that

The homeomorphism f is called a ring Q-homeomorphism in the domain D if f is
a ring (Q-homeomorphism at every point zy € D.

The following statement was first proved in [9], Theorem 3.1, cf. also Corollory
3.1 in [19].
Proposition 1.2. Let f be a homeomorphic I/Vli)cl solution of the Beltrami equation

(1). Then f is a ring Q-homeomorphism at each point zy € D with Q(z) = K, ().

2 GFMO functions

Similarly to [8] (cf. also [14], [16]), we say that a function ¢: C — R has global finite
mean oscillation at a point zg € C, abbr. ¢ € GFMO(zy), if

1
limsup ————— z) — Pgrldrdy < oo, 8
msup s [ lele) — il dady )

B(zo,R)

where )

Pr=———— 2) dd
T Bl ) ) A
B(ZO,R)

is the mean value of the function ¢(z) over B(zp, R), R > 0. Here B(z, R) = {z €
C: |z — 20| < R}, and condition (8) includes the assumption that ¢ is integrable in
B(zp, R) for R > 0.



Proposition 2.1. If, for some collection of numbers pr € R, R € [rg, +00), 19 > 0,

1
limsup —————
R~>oop m (B(zo, R))
B(ZO7R)

lo(2) — ¢r| drdy < oo,

then ¢ has global finite mean oscillation at zy.
Proof. Indeed, by the triangle inequality,

1

m (B(z, 7))
B(ZU,R)

|p(2) — Pr| dedy <

1
<—— — og| dxd — gl <
B(Z(),R)
<z / () — ol ded
S (B(z0, R)) Pl — PRl ATay.
B(zo,R)

Corollary 2.2. If, for a point zy € C,

1
hIIl sup ————
s m (B(z0, R))
B(zo,R)

lo(2) — @(z0)| dzdy < oo,

then ¢ has global finite mean oscillation at zy.

Corollary 2.3. If, for a point zg € C,

. 1
lim sup

mswp o [l dady < .

B(Zo,R)
then ¢ has global finite mean oscillation at zy.

Lemma 2.4. Let zyp € C. If a nonnegative function p: C — R has global finite
mean oscillation at zo and ¢ is integrable in B(zo,€e), then, for R > e,

o(z) dxdy
(|2 — 20| log |2 — z0])°

< C-loglog R,
A(zo0,e,R)

where -
C = 8((24 + 712)e%000 + 272 0),

o is the mean value of ¢ over the disk B(zg,e) and

1
oo = 0o0(p) = sUup ————= ©(z) — Pl dzdy
Re (e, +00) m(B(ZO,R)) | r

B(Z(),R)

is the mazximal dispersion of p.



Proof. Let R > e®, 1, =¥, A, = {2 € C:r, <|z— 20| <rps1}. Clearly,

1
0o = SUp ————— lp(2) — PRl dedy < oo,
Re(e, +o0) T (B(ZO’ R)) "
B(ZO,R)

By, = B(zp,ri) and let ¢ be the mean value of ¢(z) over By, k = 1,2,.... Take a
natural number N such that R € [ry,rn+1). Then

A(zp,e, R) C A(R U A

and
I(R) = / o(2)allz — z0l) dady < |Sy(R)| + Sa(R)
A(R)
1
U= o
N
SiR) =Y / (0(2) — pr)al|z — zo) derdy

k= 1Ak

and

Z(pk_,_l/ (|z = 20|) dzdy .

7'l'ti’2

Since Ay C Bgy1, = ZO|2 < BT for z € A, and log|z — 29| > k in Ay, then

1
|S1(R 77622 2 m(Bry) / lo(2) = pr1| dady <

k41

N ,
kgk— < e Zkﬂ:i

Now,
1 dxdy 21
/@(|Z—Zo|)d$dy§ﬁ/m=ﬁ-
Ak Ak
Moreover,
| \—;/()dd L/ dudy| <
Spk—l <)0k? - m(Bk-fl) ()0 z €z y m(kal) onr -z y X
Bk—l Bk—l
<1 / 10(2) — x| dd /| | dedy < €25
X m(Bk_l) 2 Pk y X SD — Pk Y x 00 )



and by the triangle inequality, for & > 1

k+1

b1+ Z(@l —pi-1)

=2

Ort1 = |ort1| = <

k+1

< lorf + Z lor — pi—1] < |1] + €%00s k.
1=2

Hence,
N N 9
Phk+1 Y1+ e k
S2(R) = 1S2(R)| < 27 ) —5= < 2r ) T <
k=1 k=1
0o N 1
2 _
<21 Y om +2methe Y =
k=1 k=1
3o N
2me?00e > —
+ 2me Z A
k=1
But

and, for R > ry,
N =logry <logR.

Consequently,

<1+ loglog R

M) =
| =

>~
Il
-

and thus, for R € (e€, 4+00)

200 T

6 3

I(R) < + 21e26,0(1 + loglog R) =

36200 + 12me%6, + 273
_ (w %000 + 12me?5o0 + 21301 +27re2§00> log log R <

6loglog R
< %((24 + 712)e%600 + 221 ) loglog R
Finally,
dxzd
/ pl2) dody 5 <I(R) < E((24 + 72)€%600 + 2% 1) loglog R .
(Iz = 20| log |z — 20]) 6

A(z0,e,R)



3 The behavior at infinity of homeomorphic solu-
tions of the Beltrami equations

Set
Lp(z0,€) = min [£(z) = f(z0)l,
1
Ooo =000 (Kpy20) = sup ————— / K, (2) — K, 2 (R)| dzdy,
W)= B r) J )T Kl
B(Zo,R)
1
K = K =K .
520 (R) m (B(Z()7R)) / H(Z) dxdya ko 520 (6)

B(Zo,R)

Theorem 3.1. Let yu: C — C be a measurable function with |u(z)] < 1 a.e. and
f: C — C be a homeomorphic VVI})C1 solution of the Beltrami equation (1). If K, €
GFMO(z), 20 € C, then

max [f(z) = f(z0)]

. . olz—2z0|=R
lim inf —

> l¢(%0,€), 9)

where C = Z((24 + n2)e?do0 + 2nky).

Proof. Consider the ring A(R) = A(zo, ¢, R), with R > e°. Set & = (B(z0, R), B(20,€)).
Then, by Lemma 1.1, f€ = (fB(z0, R), fB(20,€)) is a condenser in C, according
(),

cap (fB(20, ), [B(20,€)) = M(A(OfB(z0,€),0fB(z0, R); fA(R)))
and, in view of the homeomorphism of f,
By Proposition 1.2, f is a ring Q-homeomorphism with @ = K, (z), and so
cap (1B(eas R), fBlao ) < [ Ky(e)P (12 = zal) dady (10)
A(R)

for every measurable function 7: (e, R) — [0, +o00] such that

R
/ n(t)dt = 1.
Choosing in (10), n(t) = m7 we obtain

z) dxdy
(lz — z0| log |z — 20])2 "

cap (fB(20, R), fB(z0,¢)) < loglogR /

A(R)



Since K, € GFMO(z), then by Lemma 2.4,

— C
<
cap (fB(z0, R), fB(z0,¢€)) < loglog R’

where C' = Z((24 4 7%)e?6 + 2m%ko). On the other hand, by (6), we have
- 47

cap (fB(z0, ), fB(20,€)) > log MUBCAR)
m(fB(z0,€))

Combining (11) and (12), we obtain

4 C

m(fB(z0,R)) S loglog R~
m(fB(zo,e))

log

This gives

= . m(fB(20, R))
m(fB(z0,€)) < W

Using the inequalities

(i 170 = faall) < (/B e) <

|z—zo|=e

<mUB@mRD<w<rmxlﬂ@f@ﬂ>,

|z—z0|=R
we obtain
. \ZE?\}iRU(z) — f(20)|
Jmin |f(2) = f(20)] < (log B) 2

Recall that
lf(z0,e) = min [f(2) — f(20)].

[z2—zo|=e

Passing to the lower limit as R — oo in (13), we obtain the relation (9).

(12)
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Globalna $rednia skonczona oscylacja i rownania Beltramiego

Streszczenie W niniejszej pracy oszacowano wzrost homeomorficznych
rozwigzan rownania Beltramiego w nieskoniczonosci przy zalozeniu, ze iloraz dylatacji
ma globalng skoriczona $rednia oscylacje.

Stowa kluczowe: Rownania Beltramiego, (Q—homeomorfizmy pierscieniowe, modut,
pojemnos¢.



