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Abstract

We determine the invariants characterizing the Sp(n)-orbits in the real Grassmannian
GrR(2k, 4n) of the 2k-dimensional complex and Σ-complex subspaces of a 4n-dimensional
Hermitian quaternionic vector space. A Σ-complex subspace is the orthogonal sum of
complex subspaces by different, up to sign, compatible complex structure. The result
is obtained by considering two main features of such subspaces. The first is that any
such subspace admits a decomposition into an Hermitian orthogonal sum of 4-dimensional
complex addends plus a 2-dimensional totally complex subspace if k is odd, meaning that
the quaternionification of the addends are orthogonal in pairs. The second is that any 4-
dimensional complex addend U is an isoclinic subspace i.e. the principal angles of the pair
(U,AU) are all the same for any compatible complex structure A. Using these properties
we determine the full set of the invariants characterizing the Sp(n)-orbit of such subspaces
in GrR(2k, 4n).
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Summary

In this paper we study the Sp(n)-orbits in the real Grassmannians GrR(2k, 4n)
of some special 2k-dimensional subspaces of a 4n-dimensional real vector space V .
We endow V with an Hermitian quaternionic structure (Q, <,>), an Hermitian
product ( · ) and denote by S(Q) the 2-sphere of complex structures J ∈ Q. The
invariants characterizing the Sp(n)-orbit of a generic subspace U ⊂ V appear in [20]
where we find some equivalent statements. The first one we report here is given
in the Theorem (3.1) where it is stated that a pair of subspaces U and W of real



dimension m in the H-module V 4n belong to the same Sp(n)-orbit iff there exist
bases BU = (X1, . . . , Xm) and BW = (Y1, . . . , Ym) of U and W respectively w.r.t.
which for the Hermitian products one has (Xi ·Xj) = (Yi · Yj), i = 1, . . . ,m for one
and hence any (hypercomplex) admissible basis of Q.

Let θA(U) be the vector of the principal angles between the pair (U,AU), A ∈
S(Q) in non decreasing order. A consequence of the Theorem (3.1) is that a necessary
condition for U and W to share the same Sp(n)-orbit is that, for one and hence any
admissible basis (I, J,K), one has θI(U) = θI(W ), θJ(U) = θJ(W ), ,θK(U) =
θK(W ).

The determination of the principal angles between a pair of subspaces S, T is
a well know problem solved by the singular value decomposition of the orthogonal
projector of S onto T . Here, for a chosen U ⊂ V we consider the pairs (U,AU), A ∈
S(Q) and denote by PrAU the orthogonal projector of U onto AU . In this case the
singular values of PrAU are always degenerate which implies that they have non-
unique singular vectors. In terms of principal vectors of the pair (U,AU) we can
equivalently say that the principal vectors are never uniquely defined.

Another way to obtain the principal angles and the associated principal vectors
between the pair of subspaces (U,AU), for any A ∈ S(Q), is through the standard
decompositions of the restriction to U of the A-Kähler skew-symmetric form ωA :
(X,Y ) 7→< X,AY >, X, Y ∈ U . Calling standard basis any orthonormal basis
w.r.t. which ωA|U assumes standard form, with the non-negative entries ordered
in non increasing order, and denoting by BA(U) the set of all such bases one has
that any B ∈ BA(U) consists of principal vectors of the pair (U,AU). As stated
beforehand, for any A ∈ S(Q) the standard bases of ωA are never unique not even
if U is 2-dimensional. This is the main problem in determining the Sp(n)-orbits
in GrR(k, 4n) as it is evident from an equivalent conditions to the one stated in
Theorem (3.1) appearing in [20] and here reported in Theorem (3.2). According to
it, a pair of subspaces U,W are in the same Sp(n)-orbit iff, for one and hence any
admissible basis (I, J,K) of Q the following 2 conditions are satisfied:

• θI(U) = θI(W ), θJ(U) = θJ(W ), θK(U) = θK(W );

• there exist three orthonormal bases ({Xi}, {Yi}, {Zi}) ∈ (BI(U) × BJ(U) ×
BK(U)) and ({X ′

i}, {Y ′
i }, {Z ′

i}) ∈ (BI(W )×BJ(W )×BK(W )) whose relative
position is the same or equivalently

A = A′, B = B′

where A = (< Xi, Yj >), A′ = (< X ′
i, Y

′
j >), B = (< Xi, Zj >),

B′ = (< X ′
i, Z

′
j >).

The problem to determine the Sp(n)-orbits turns therefore into the one of de-
termining the existence of such triple of bases. In [20] we set up a procedure to
determine a triple of canonical bases w.r.t. which one computes the matrices A
and B. Namely, fixed an admissible basis (I, J,K), a triple of canonical bases of
a subspace U is constituted by a triple of standard bases of ωI , ωJ , ωK that either
are uniquely determined by the procedure aforementioned or, if this is not the case,
nevertheless the associated matrices A,B are unique.



We call the matrices obtained thereof canonical matrices and denote them by
CIJ and CIK . In [20], Chosen an admissible basis (I, J,K) we associate then to any
subspace U ⊂ V the following invariant

Inv(U) = {θI(U), θJ(U), θK(U), CIJ , CIK},

and in the Theorem (3.3) we affirm that the subspaces U and W of V are in the
same Sp(n)-orbit iff Inv(U) = Inv(W ). If Inv(U) = Inv(W ) w.r.t. the admissible
basis (I, J,K) then Inv(U) = Inv(W ) for any admissible basis.

After recalling the definition of some special subspaces of V , in Proposition (4),
we show that a generic subspace U of (V,Q, <,>) admits a decomposition

Um = UQ

⊥
⊕ UΣ

⊥
⊕ UR with UΣ = (U1, I1)

⊥
⊕ . . .

⊥
⊕ (Up, Ip)

into an orthogonal sum of the maximal quaternionic subspace UQ, a Σ-complex sub-
space UΣ, defined as the orthogonal sum of maximal Ii-complex subspaces (Ui, Ii)
with Ii ∈ S(Q) and a totally real subspace UR. In Proposition (1.11) we prove that
the complex addends UQ and (Ui, Ii) are Hermitian orthogonal i.e. their quater-
nionifications UQ and (Ui)

H are orthogonal in pairs. In general this is not true for
the orthogonal totally real addend UR.

The subspaces we consider in this paper are the I-complex subspaces (U, I) with
I ∈ S(Q) and the Σ-complex subspaces. It will turn out that the analysis of the
4-dimensional complex case is fundamental to determine the Sp(n)-orbit of such
subspaces. Any 4-dimensional I-complex subspace (U, I) is characterized by the fact
that, for any A ∈ S(Q) the pair (U,AU) is isoclinic. In [21] we denoted by IC4 the
set of all 4-dimensional subspaces sharing this property and we called them isoclinic
subspaces. We then recall the main results which concern a subspace U ∈ IC4

referring to [21] for proofs and a wider treatment.
In [21] we determined the triple of canonical bases {Xi}, {Yi}, {Zi}, i = 1, . . . , 4

of U . Given an admissible basis (I, J,K) and chosen X1 ∈ U , we considered the
standard 2-planes U I = L(X1, X2), UJ = L(X1, Y2), UK = L(X1, Z2) centered on
a common unitary vector X1 of the skew-symmetric forms ωI , ωJ , ωK respectively
where

X2 =
I−1PrIUU X1

cos θI
, Y2 =

J−1PrJUU X1

cos θJ
, Z2 =

K−1PrKU
U X1

cos θK
.

Denoted by ξ =< X2, Y2 >, χ =< X2, Z2 >, η =< Y2, Z2 >, in Corollary
(3.11) we proved that the triple (ξ, χ, η) is an invariant of U . We introduced Γ as a
function of (ξ, χ, η) and ∆ = ±

√
1− Γ2. After proving that the pair (Γ,∆) itself is

an invariant of U , in the Proposition (3.21) we affirm that the invariants (ξ, χ, η,∆)
determine the canonical matrices CIJ and CIK which are given in (21) w.r.t. the
canonical bases. Therefore, according to the statement of the Theorem (3.3), in
the Theorem (3.22) we state that the invariants (ξ, χ, η,∆) together with the angles
(θI , θJ , θK) determine the Sp(n)-orbit of any U ∈ IC4 in GR(4, 4n).

The set of 4-dimensional complex subspaces is a subset of IC4. Let then (U, I)
be a 4-dimensional I-complex subspace with I ∈ S(Q). Fixed an adapted basis



(I, J,K), we associate to (U, I) the I⊥- Kähler angle θI
⊥

which is one of the four
identical principal angles of the pair (U,KU) observing that KU is the same for any
K ∈ I⊥ ∩ S(Q). In this case the angles of isoclinicity (θI , θJ , θK) = (0, θI

⊥
, θI

⊥
)

and we denote such subspace by the triple (U, I, θI
⊥
). Furthermore, considered a

triple of canonical bases {Xi}, {Yi}, {Zi}, i = 1, . . . , 4 of the skew-symmetric forms
ωI , ωJ , ωK centered on X1 one has ξ = χ = η = 0 and the matrices CIJ and CIK

of all 4-dimensional complex subspaces are given in (28). Then, according to the
Theorem (3.3), the pair (I, θI

⊥
) determines the Sp(n)-orbit of U i.e. all and only

the 4-dimensional I-complex subspaces with same I⊥- Kähler angle constitute one
Sp(n)-orbit in GR(4, 4n) as stated in Theorem (3.33).

In Theorem (3.37) we affirm that a 2m-dimensional I-complex subspace ad-
mits an Hermitian orthogonal decomposition into 4-dimensional I-complex sub-
spaces. Although such decomposition is not unique we can associate to U the
canonically defined I⊥-Kähler multipleangle θI⊥

= (θI
⊥

1 , . . . , θI
⊥

[m/2]) (θI⊥
=

(θI
⊥

1 , . . . , θI
⊥

m/2, π/2) if m is odd) of the I-complex 2m-dimensional subspace (U, I)

being θI⊥
the set of the I⊥-Kähler angle of the Hermitian orthogonal 4-dimensional

I-complex addends (plus the K-Kähler angle of an Hermitian orthogonal totally
I-complex plane if m is odd with K ∈ I⊥). Denoted by GrR

(I,θI⊥ )
(2m, 4n) the

set of 2m-dimensional pure I-complex subspaces in (V 4n, <,>,Q) with I⊥-Kähler
multipleangle θI⊥

, in Theorem (3.42) we state that the group Sp(n) acts transi-
tively on GrR

(I,θI⊥ )
(2m, 4n) i.e. the pair (I,θI⊥

) composed by the complex structure

I ∈ Q and the I⊥-Kähler multipleangle θI⊥
of the I-complex subspace U determines

completely its Sp(n)-orbit in the Grassmannian GrR(2m, 4n).
In particular, all totally I-complex subspaces of same dimension form one orbit

in GR(2m, 4n).
We then consider a Σ-complex subspace U . From Proposition (1.14) the de-

composition of U into an orthogonal sum of maximal pure complex subspaces by
different (up to sign) structures is unique. Moreover, from Proposition (1.11), the
2mi-dimensional Ii-complex subspaces are Hermitian orthogonal and to determine
the Sp(n)-orbit we can deal separately with each Ii-complex addend. In Proposi-
tion (3.43) we state that the pair (I,Θ), where I = {Ii} and Θ = {θI⊥

i

i } is the
vector whose elements are the I⊥i -Kähler multipleangle of the Ii-complex addend,
completely determines the orbit in the real Grassmannian.

1 Decomposition of a generic subspace
of an Hermitian quaternionic vector space

1.1 The Hermitian quaternionic structure

Let V be a real vector space of dimension 4n.

Definition 1.1.



1. A triple H = {J1, J2, J3} of anticommuting complex structures on V with
J1J2 = J3 is called a hypercomplex structure on V .

2. The 3-dimensional subalgebra

Q = spanR(H) = RJ1 + RJ2 + RJ3 ≈ sp1

of the Lie algebra End(V ) is called a quaternionic structure on V .

Note that two hypercomplex structures H = {J1, J2, J3} and H′ = {J ′
1, J

′
2, J

′
3}

generate the same quaternionic structure Q iff they are related by a rotation, i.e.

J ′
α =

∑
β

Aβ
αJβ , (α = 1, 2, 3)

with (Aβ
α) ∈ SO(3). A hypercomplex structure generating Q is called an admissible

basis of Q. We denote by S(Q) the 2-sphere of complex structures J ∈ Q i.e.
S(Q) = {aJ1 + bJ2 + cJ3, a, b, c ∈ R, a2 + b2 + c2 = 1}.

A real vector space V endowed with a hypercomplex structure (J1, J2, J3) is an
H-module by defining scalar multiplication by a quaternion q as follows:

qX = (a+ ib+ jc+ dk)X = aX + bJ1X + cJ2X + dJ3X, X ∈ V, a, b, c, d,∈ R

and (i, j, k) a basis of Im(H) satisfying

i2 = j2 = k2 = −1; ij = −ji = k. (1)

Definition 1.2. An Euclidean scalar product < , > in V is called Hermitian w.r.t.
a hypercomplex basis H = (Jα) (resp. the quaternionic structure Q = span(H)R) iff
for any X,Y ∈ V

< JαX,JαY >=< X,Y > or equivalently < JαX,Y >= − < X, JαY >,

(α = 1, 2, 3)
(respectively,

< JX, JY >=< X,Y > or equivalently < JX, Y >= − < X, JY >, (∀J ∈ Q))

Definition 1.3. A hypercomplex structure H (resp. quaternionic structure Q) to-
gether with an Hermitian scalar product < , > is called an Hermitian hypercom-
plex (resp. Hermitian quaternionic) structure on V and the triple
(V 4n,H, <,>) (resp. (V 4n,Q, <,>)) is an Hermitian hypercomplex (resp. qua-
ternionic) vector space.

The prototype of an Hermitian hypercomplex vector space is the n-dimensional
quaternionic numerical space Hn which is a real vector space of dimension 4n, a
H-module with respect to right (resp. left) multiplication by quaternions and is
endowed with the canonical positive definite Hermitian product

h · h′ =
∑n

α=1 hαh
′
α (resp. h · h′ =

∑n
α=1 hαh′

α)
h = (h1, . . . , hn), h

′ = (h′
1, . . . , h

′
n) ∈ Hn.

(2)



The real part of the Hermitian product defines an Euclidean scalar product
< , >= Re(·) on the real vector space Hn ≃ R4n. If we consider the basis (1, i, j, k) of
H satisfying the multiplication table obtainable from the conditions (1) one has that
the right multiplications by −i,−j,−k (resp. left multiplication by i, j, k) induce real
endomorphisms (I = R−i, J = R−j ,K = R−k) (resp. (I = Li, J = Lj ,K = Lk))
of the H-module Hn satisfying I2 = J2 = K2 = −Id, IJ = K = −JI and skew-
symmetric with respect to the metric < , > i.e. an Hermitian hypercomplex structure
on Hn.

We recall that a new basis (1, i′, j′, k′) of H give rise to the multiplication table
(1) iff (i′, j′, k′) = (i, j, k)C with C ∈ SO(3). We will denote by B the set of bases
of H satisfying the relations (1) and call it canonical system of bases. In [3] it
has been proved that

Proposition 1.4. [3] Both the Hermitian product and the scalar product of Hn have
intrinsic meaning (SPIEGARE) with respect to the canonical system of bases B.

Let (1, i, j, k) ∈ B be a chosen basis in H and denote by I = R−i, J = R−j , K =
R−k the real endomorphisms of the H-module Hn. Let Q = spanR(I, J,K).

Proposition 1.5. For the scalar product and the Hermitian product of a pair of
vectors L,M ∈ Hn the following relation holds:

L ·M =< L,M > + < L, IM > i+ < L, JM > j+ < L,KM > k (3)

Proof. We prove that < L, IM >,< L, JM >,< L,KM > are respectively the
coefficients of i, j, k in the Hermitian product L · M . In fact < L, IM >= Re(L ·
−Mi) = −Re(L ·M)i which is exactly the coefficient of i of the quaternion L ·M
and analogously for < L, JM > and < L, KM >.

After identifying an admissible hypercomplex structures (I, J,K) of V with
(R−i, R−j , R−k) of H, we can endow a quaternionic Hermitian vector space with the
Hermitian product given in (3). It has an intrinsic meaning w.r.t. the admissible
bases, that is, using a different admissible basis (I ′, J ′,K ′) = (I, J,K)C, C ∈ SO(3),
the coordinates of the obtained quaternion are w.r.t. the basis (i′, j′, k′) = (i, j, k)C.
In the following we consider such an identification.

1.2 Special subspaces of an Hermitian quaternionic vector
space

Let (V 4n,Q, <,>) be an Hermitian quaternionic vector space endowed with the
Hermitian product given in (3). In the following, given a finite set {M1, . . . ,Ms}
of vectors of V , we denote by L(M1, . . . ,Ms) or equivalently by spanR(M1, . . . ,Ms)
their linear span over R. We will denote by (I, J,K) a generic admissible basis of Q
and by I⊥ = L(J,K) ∩ S(Q) i.e. I⊥ = {βJ + γK, β2 + γ2 = 1}. Moreover, given
a subspace U ⊂ V , UH denotes its quaternionification i.e. the subspace spanned on
H by some basis of U . In particular, given a vector X ∈ V by QX we denote the
4-dimensional real subspace real image of the 1-dimensional subspace generated by
X over H i.e. QX = spanR(X, IX, JX,KX) = (RX)H.



Definition 1.6. Let (V 4n,Q, <,>) be an Hermitian quaternionic vector space. A
subspace U ⊂ V is quaternionic if AU = U, ∀A ∈ S(Q). A subspace is pure if
it does not contain any non trivial quaternionic subspace. Let I ∈ S(Q), then U is
I-complex and we denote it by (U, I) if U = IU . In particular (U, I) is a totally
I-complex subspace if, for any J ∈ I⊥, the pair of subspaces (U, JU) are strictly
orthogonal 1. A subspace is totally real if it does not contain any complex subspace
or equivalently if AU ∩ U = {0}, ∀A ∈ S(Q). In particular it is a r.h.p.s. (real
hermitian product subspace) if, for any pair of vectors X,Y ∈ U , one has X ·Y ∈ R.

A totally I-complex subspace is a c.h.p.s. (complex hermitian product subspace)
i.e., for any pair of vectors X,Y ∈ U , X ·Y = a+ib, a, b ∈ R. Clearly a 2-dimensional
I-complex subspace is totally I-complex. Furthermore a totally real subspace is a
r.h.p.s. iff for any admissible basis, the pairs (U, IU), (U, JU), (U,KU) are strictly
orthogonal. We recall some results regarding the subspaces just defined:

Claim 1.7.

• For quaternionic subspaces:

1. The sum and the intersection of quaternionic subspaces is a quaternionic sub-
space.

Proof. In fact if 0 ̸= X ∈ U1 ∩ U2 with U1, U2 quaternionic subspaces then
QX ∈ U1 and QX ∈ U2 then QX ∈ U1 ∩ U2. For the sum, one has that
for every vector Z = X + Y ∈ U1 + U2 and every A ∈ S(Q) one has AZ =
AX +AY ∈ U1 + U2.

2. The orthogonal complement of a quaternionic subspace of a quaternionic space
is quaternionic.

Proof. Let U be quaternionic and W ⊂ U quaternionic as well. Let consider
the orthogonal decomposition U = W ⊕ W⊥. For X ∈ W⊥, A ∈ S(Q), let
AX = X1 +X2 with X1 ∈ W = AW and X2 ∈ W⊥. Being A(AX) = −X =
AX1 +AX2 it follows that X1 = 0 and any A ∈ S(Q) preserves W⊥ i.e. W⊥

is quaternionic.

• For I-complex subspaces:

3. The subspace U is I-complex iff it is (−I)-complex. In the following, when we
will speak of an I-complex subspace we will always imply "up to sign".

1A pair of subspaces A,B are orthogonal if the angle between them is π/2 i.e. if there exists a
line in A orthogonal to B. In particular they are strictly orthogonal and we wrote A ⊥ B if any
line in A is orthogonal to B. In terms of principal angles (whose definition we recall in (2.3)), we
can say that a pair of subspaces A,B of dimensions m,n, m ≤ n is orthogonal if at least one of
the principal angle is π/2 and is strictly orthogonal of all m principal angles equal π/2. Clearly
the pair (A,B) is strictly orthogonal iff if is orthogonal and isoclinic (see the Definition (2.7). For
instance, for any T ∈ S(Q) and U ⊂ V a 2-plane, the pair U, TU is isoclinic. Then in this case one
can speak indifferently of orthogonality or strictly orthogonality.



4. Let (U, I) be pure and suppose (U ′, I ′) ⊆ U . Then I ′ = ±I. In other words
an I-complex subspace does not contain any complex subspace by a different
complex structure (up to sign).

Proof. Suppose 0 ̸= Y ∈ U ∩ U ′ then I(I ′Y ) = I(αIY + βJY + γKY ) =
−αY + βKY − γJY ∈ U which implies βKY − γJY = K(βY − γIY ) ∈ U .
From pureness of U it follows β = γ = 0 i.e. I ′ = ±I.

5. The orthogonal complement to a complex subspace W of an I-complex space U
is an I-complex subspace.

Proof. From previous statement, W is necessarily ±I-complex. Consider then

(W, I) ⊂ (U, I) and the orthogonal decomposition (U, I) = (W, I)
⊥
⊕ Ũ where

Ũ is the orthogonal complement to W in U . Let Z ∈ Ũ non null and consider
the vector IZ = X +Y with X ∈ W and Y ∈ Ũ . Then Ũ ∋ I(IZ) = IX + IY
implies that X = 0 i.e. Ũ is I-complex.

6. Sum and intersection of I-complex subspaces is an I-complex subspace.p

Proof. Let W = (U1, I) ∩ (U2, I). If Z ∈ W then IZ ∈ U1 and IZ ∈ U2

then W is I-complex. Let now consider U1 + U2 = Ū1

⊥
⊕ W

⊥
⊕ Ū2 where Ū1

(resp. Ū2) is the orthogonal complement to W in U1 (in U2). From (5), the
subspaces Ū1 and Ū2 are I-complex. If T ∈ (U1 + U2) = X + Y + Z with
X ∈ Ū1, Y ∈ W, Z ∈ Ū2 one has IT ∈ U1 + U2.

7. Let (U, I) be an I-complex subspace. An adapted basis of U is an admissible
basis containing I. For any K,K ′ ∈ I⊥ one has that KU = K ′U is I-complex.

Proof. Let (I, J,K) be an adapted bases. One has JU = KIU = KU . Let
K ′ = αJ + βK ∈ I⊥. For any X ∈ U it is K ′X = αJX + βKX ∈ JU . The
subspace KU is clearly I-complex since IKU = KIU = KU .

8. If (U, I) is pure, then JU ∩ U = {0} for any J ∈ I⊥.

Proof. In fact suppose JY ∈ U ∩ JU with Y ∈ U . Then Y, IY, JY are in U as
well as I(JY ) = KY which is absurd by the hypothesis of pureness.

9. The intersection of a pair of pure complex subspaces by different, up to sign,
complex structures is a totally real subspace.

Proof. Let (U, I) and (U ′, I ′) be a pair of pure complex subspaces with I ′ ̸= ±I
and denote W = U ∩U ′. Suppose W is complex. Applying the previous result,
W as a subspace of U can only be a pure ±I-complex and as a subspace of U ′

can only be pure ±I ′-complex. Then W is totally real.



• For totally real subspaces:

10. By definition, a totally real subspace U is pure.

11. Given a hypercomplex basis (I, J,K) it is IU ∩ JU = IU ∩KU = JU ∩KU =
{0}.

Proof. In fact, suppose 0 ̸= Y = Iv = Jw ∈ IU ∩ JU for the non null vectors,
v, w ∈ U . Then I2v = −v = IJ(w) = Kw which is absurd since by definition
U ∩KU = {0}.

12. Let U be a totally real subspace. If U is a r.h.p. subspace dim(U)H = 4dimU
otherwise dim(U)H ≥ 2 dimU .

Proof. If U is a r.h.p.s. for any admissible basis (I, J,K), any pair of the 4
subspaces (U, IU, JU,KU) is strictly orthogonal. If instead U is totally real
then clearly dim(U)H ≥ 2 dim(U) since, from (11), any pair of the subspaces
U, IU, JU,KU have trivial intersection.

13. Any subspace of a r.h.p. subspace is a r.h.p.s.

Proof. It’s straightforward.

1.3 Decomposition of a generic subspace
The following proposition shows that, by using quaternionic, pure complex and
totally real subspaces as building blocks, we can build up any subspace U of an
Hermitian quaternionic vector space (V 4n,Q, <,>)).

Proposition 1.8. Let U ⊆ V be a subspace and let UQ be its maximal quaternionic
subspace. Then U admits an orthogonal decomposition of the form

Um = UQ

⊥
⊕ UΣ

⊥
⊕ UR with

UΣ = (U1, I1)
⊥
⊕ . . .

⊥
⊕ (Up, Ip)

(4)

where (Ui, Ii) are maximal pure Ii-complex and UR is totally real.

Proof. For any A ∈ S(Q) we denote by UA the maximal A-invariant subspace in U .
Let U1 be the orthogonal complement to UQ in U and choose a complex structure

I1 such that (U1, I1) := U1
I1

̸= {0}. Then we can write U = UQ

⊥
⊕ (U1, I1)

⊥
⊕ U2

where U2 is the orthogonal complement in U to UQ

⊥
⊕ (U1, I1).

Let now choose a complex structure I2 such that (U2, I2) := U2
I2

̸= {0}. Then

U = UQ

⊥
⊕ (U1, I1)

⊥
⊕ (U2, I2)

⊥
⊕ U3 where U3 is the orthogonal complement to

UQ

⊥
⊕ (U1, I1)

⊥
⊕ (U2, I2).

Denote by p+1 the step in which Up+1 has no invariant complex subspace. Then
Up+1 = UR is totally real.



Proposition 1.9. It is (UR)
H ∩ UQ = {0}.

Proof. Suppose W = (UR)
H ∩ UQ. From point (1) of the Claim (1.7), W is quater-

nionic. Let (UR)
H = W⊕W⊥. From point (2) of the same Claim, W⊥ is quaternionic

and since UR ⊂ W⊥ being by construction UQ ⊥ UR one has that (UR)
H = W⊥ i.e.

W = {0}.

In the following, given a pair of subspaces (A,B), by A
H

⊥ B we intend that A
and B are orthogonal in Hermitian sense i.e. their quaternionifications AH, BH are

strictly orthogonal (in other words A
H

⊥ B is equivalent to AH ⊥ BH). We now prove
the following facts:

1. In the orthogonal sum UQ

⊥
⊕ (U1, I1)

⊥
⊕ . . .

⊥
⊕ (Up, Ip) any pair of the complex

addends are orthogonal in Hermitian sense.

2. If in (1.8) one has UR = {0} the given decomposition is unique.

To prove (1) we need the following

Lemma 1.10. Let U1 = L(X, IX) and U2 = L(Y, I ′Y ) be a pair of 2-dimensional
complex subspaces . Then if I ′ ̸= ±I we have that

U1 ⊥ U2 ⇔ U1

H

⊥ U2, ( i.e. ⇔ QX ⊥ QY ).

Proof. Since for any complex structure A ∈ S(Q), the 2-plane L(X,AX) ⊂ QX,
then clearly if QX ⊥ QY , we have U1 ⊥ U2. Viceversa let suppose that I is a
complex structure and (I, J,K) an adapted basis. Let I ′ = αI + βJ + γK, with
α2 + β2 + γ2 = 1. Then U1 ⊥ U2 if

0 =< Y,X >
0 =< Y, IX >
0 =< I ′Y,X >=< αIY + βJY + γKY,X >⇒ −β < Y, JX > −γ < Y,KX >= 0
0 =< I ′Y, IX >=< αIY + βJY + γKY, IX >⇒ −γ < Y, JX > +β < Y,KX >= 0,

This implies {
Y ⊥ U1

(−β2 − γ2) < Y, JX >= 0.

Then
U2 ⊥ U1 ⇔

{
I ′ = ±I and Y ⊥ U1 or
Y ⊥ QX

(5)

since from above < Y, JX >= 0 ⇒< Y,KX >= 0.
Then a pair of complex 2-planes U1 = L(X, IX), U2 = L(Y, I ′Y ) are orthogonal

iff whether I = ±I ′ and Y ⊥ U1 (but not necessarily to QX) or for the quaternionic
subspaces QX ⊥ QY . 2

2This Lemma is true also in a para-quaternionic Hermitian vector space. In that case the Lemma
applies not only to a pair of 2-dimensional complex subspaces but also to a pair of 2-dimensional
para-complex subspaces or to a pair made of a 2-dimensional complex and a 2-dimensional para-
complex subspace. For interested readers, in [16] and [18] it is possible to find the analogue
decomposition of a para-quaternionic Hermitian vector space which differs from (4) because of the
existence, in that case, of (weakly) para-complex and nilpotent subspaces.



It follows that if Y ∈ QX then L(Y, ĨY ) is never orthogonal to U1 unless Ĩ = ±I
(in which case L(Y,±IY ) = L(JX,KX), i.e. a pair of complex 2-planes by different
(up to sign) complex structures and belonging to the same quaternionic line are
never orthogonal to each other. Viceversa, since any 2-plane in a quaternionic line
is Ĩ-complex for some Ĩ ∈ S(Q), if U1 and U2 are orthogonal 2-planes belonging to
the same quaternionic line then they are complex by the same complex structure.
We can now state the

Proposition 1.11. Strictly orthogonal complex subspaces by different complex struc-
tures are orthogonal in Hermitian sense i.e. their quaternionifications are strictly
orthogonal in pair. In particular the different complex addends in UΣ given in (4)
are orthogonal in Hermitian sense.

Proof. Let consider the pair (U1, I1) and (U2, I2), I1 ̸= ±I2, of strictly orthogonal
complex subspaces. Any I-complex subspace can be decomposed into the orthogonal
sum of I-complex 2 planes. From (1.10), any 2-plane of the decomposition of (U1, I1)
is Hermitian orthogonal to any 2-plane of the decomposition of (U2, I2) then U1

H ⊥
U2

H. We conclude then the different addends of UΣ belong to strictly orthogonal
quaternionic subspaces.

Definition 1.12. We call Σ-complex subspace a pure subspace U ⊂ (V 4n,Q, <,>
) orthogonal sum of maximal complex subspaces (Ui, Ii) with Ii ∈ S(Q). We denote
it by (U, I) where I = {Ii}.

Fixed an admissible basis (I, J,K), we need to order the set I = {Ii = αiI +
βiJ + γiK}. A way to do it is for instance by using the lexicographic order of the
coefficients αi, βi, γi. By Proposition (1.11), the complex addends of a Σ-complex
subspace are orthogonal in Hermitian sense.

To prove the following proposition concerning the decomposition of a Σ-complex
subspace, we need the

Lemma 1.13. The orthogonal sum of a pair of pure complex subspaces (U1, I),
(U2, I

′), I ̸= ±I ′ contains no other complex subspace (not contained in U1 or U2).

Proof. Let (U1, I) and (U2, I
′), I ̸= ±I ′ be a pair of orthogonal pure complex

subspaces and consider their sum U = U1

⊥
⊕ U2. From Proposition (1.11) one has

that UH
1 ⊥ UH

2 . Suppose there exists 0 ̸= T ∈ U , T = X + Y, X ∈ U1, Y ∈ U2

and Ĩ = αI + βJ + γK ∈ S(Q) such that ĨT ∈ U . The vector ĨT = (αIX +
βJX + γKX) + (αIY + βJY + γKY ) is orthogonal sum (in a unique way) of a
vector T1 ∈ U1 and a vector T2 ∈ U2. The vector αIX ∈ U1 whereas the vector
βJX + γKX ∈ U⊥

1 and also βJX + γKX ⊥ (αIY + βJY + γKY ) ∈ QY . Then
necessarily βJX + γKX = 0 i.e. I(JX) = −β

γ JX. Since I has no real eigenvalues,
such equation is satisfied if X = 0 or if β = γ = 0 i.e. if Ĩ = ±I. Analogously, if
Ĩ = α′I ′+β′J ′+γ′K ′ one has that β′J ′Y +γ′K ′Y = 0 which implies that Y = 0 or
β′ = γ′ = 0 i.e. if Ĩ = ±I ′. Then excluding the case X = Y = 0 the only possibilities
are Ĩ = ±I and Y = 0 or Ĩ = ±I ′ and X = 0. The first implies that T = X ∈ U1

and T̃ = IX ∈ U1; the second implies T = Y ∈ U2 and T̃ = I ′Y ∈ U2.



Extending the previous proof to a finite number of addends we can then state
the following

Proposition 1.14. Let U ⊂ V be a Σ-complex subspace. Then all other subspaces in
U (not contained in the complex addends) are totally real. In other words the given
decomposition of U into an Hermitian orthogonal sum of maximal pure complex
subspaces by different structure (up to sign) is unique.

This results applies in particular to the Σ-complex subspace UΣ of the decom-
position given in (4).

We finally underline that in general the Euclidean orthogonal sum UΣ
⊥
⊕ UR in

(1.8) is not orthogonal in Hermitian sense. Moreover the two addends are not canon-
ically defined as can be easily seen by considering for example the 4-dimensional
pure subspace U = (U1, I1) ⊕ (U2, I2), I1 ̸= I2 direct but not orthogonal sum of

a pair of (totally) complex 2-planes. The decomposition U = U1

⊥
⊕ (U⊥

1 ∩ U) and

U2

⊥
⊕ (U⊥

2 ∩U) are two different orthogonal decomposition where U⊥
1 ∩U and U⊥

2 ∩U
are different totally real 2-planes.

2 Preliminaries
We define the (Euclidean) angle between two subspaces of dimension p and q of an
Euclidean vector space En by using exterior algebra (see [14] among others). Let
(En, < , >) be an n-dimensional vector space endowed with an Euclidean scalar
product. Any decomposable p-vector α = a1 ∧ . . . ∧ ap ∈ ΛpEn corresponds to
an oriented subspace Ap ∈ En and precisely to the one spanned by a1, . . . , ap.
Conversely, for any basis of Ap the wedge of these vectors is a multiple of α (i.e. it
is equal to kα, with k ∈ R, k ̸= 0). The scalar product < , > in En induces a scalar
product · in the vector space ΛpEn by defining

α · β = det(< ai, bj >)

for a pair of decomposable vectors α = a1∧ . . . ,∧ap; β = b1∧ . . . ,∧bp, ai, bi ∈
En and then extending for linearity to any pair of vectors of ΛpEn.

It is definite positive and non degenerate then the pair (ΛpEn, <>) is an Eu-
clidean vector space. In particular for the angle between α and β,

cos α̂β =
α · β√

α · α
√
β · β

=
det(< ai, bi >)

mis α mis β
. (6)

being
mis α = |α| =

√
α · α.

Given Ap and Bq and α = a1 ∧ . . . ,∧ap ∈ ΛpEn associated to A and β =
b1 ∧ . . . ,∧bq ∈ ΛqEn associated to B, we consider the orthogonal projections of
a1, . . . , ap on B and B⊥. Then ai = aHi + aVi , and α = αH + αV + αM (where M
stands for mixed part).



If we choose another basis in A (then α′ = kα) we have

α′
H = kαH , α′

V = kαV , α′
M = kαM .

Definition 2.1. The angle Â, B between the non oriented subspaces Ap and Bq,
p ≤ q is the usual angle (between two lines, a line and a plane, two planes) i.e. the
angle between one subspace and its orthogonal projection onto the other i.e.

θ = arccos
|αH |
|α|

.

Then θ ∈ [0, π/2] and, from previous Lemma, it is independent from the chosen
basis in A. In particular, if p = q we can write

θ = arccos
|det(< ai, bj >)|

|α| |β|
(7)

i.e. the cosine of the angle between a pair of p-planes A,B ⊂ En equals the ab-
solute value of the cosine of the angle between any pair of p-vectors α, β ∈ ΛpEn

corresponding to A and B.

Remark 2.2. In case we consider oriented subspaces of En then we do not take the
absolute value in the previous expressions and one has θ ∈ [0, π]. Unless expressively
stated, no orientation will be defined on the subspaces we consider in this paper.

We recall the definition of the principal angles between a pair of subspaces of a
real vector space V (see [6],[10] among others).

Definition 2.3. Let A,B ⊆ V be subspaces, dim k = dim(A) ≤ dim(B) = l ≥ 1.
The principal angles θi ∈ [0.π/2] between the subspaces A and B are recursively
defined for i = 1, . . . , k by

cos θi =< ai, bi >=

max{< a, b > : ||a|| = ||b|| = 1, a ⊥ am, b ⊥ bm, m = 1, 2, . . . , i− 1}.
The unitary vectors {aj}, {bj}, j = 1, . . . , k are called the principal vectors of the
pair (A,B), in particular (aj , bj) ∈ (A×B), j = 1, . . . , k are related principal vectors
corresponding to θj.

In words, the procedure is to find the unit vector a1 ∈ A and the unit vector
b1 ∈ B which minimize the angle between them and call this angle θ1. Then consider
the orthogonal complement in A to a1 and the orthogonal complement in B to b1
and iterate. The principal angles θ1, . . . , θk between the pair of subspaces A,B are
some of the critical values of the angular function

ϕA,B = A×B → R

associating with each pair of non-zero vectors a ∈ A, b ∈ B the angle between them.
In the following, given a pair of subspaces A,B we will denote by PrBA : A → B
(resp. PrAB) the orthogonal projector of A onto B (resp. B onto A). The principal
angles are the diagonal entries of the orthogonal projector PrAB stated in the theorem
of Afriat ([8], [1]):



Theorem 2.4. [1], [8]. In any pair of subspaces Ak and Bl there exist orthonormal
bases {ui}ki=1 and {vj}lj=1 such that < ui, vi >≥ 0 and < vi, vj >= 0 if i ̸= j.

Proof. It is a direct consequence of the following

Lemma 2.5. Given finite dimensional subspaces A,B, let a1, b1 attain

max{< a, b >, a ∈ A, b ∈ B, ||a|| = 1, ||b|| = 1}

(i.e. the pair (a1, b1) are the first pair of related principal vectors). Then

1. for some α ≥ 0,
PrBAa1 = αb1, P rABb1 = αa1

2. a1 ⊥ (b⊥1 ∩B) and b1 ⊥ (a⊥1 ∩ A) which leads the diagonal form of the matrix
of the Projector PrBA (and PrAB).

To see that 1) holds, note that PrBAa1 = αb where α, b minimize ||a1 − αb||2 for
b ∈ B, ||b|| = 1 and α a scalar. Thus to minimize ||a1−αb||2 = α2−2α < a1, b > +1
we must maximize < a1, b >. Moreover α =< a1, b1 > is the cosine of the first
principal angle.

For 2), let A1 = a⊥1 ∩ A (resp. B1 = b⊥1 ∩ B). If a ∈ A1, then a ⊥ b1 since
< a, b1 >=< PrAAa, b1 >=< a, PA

A b1 >=< a, αa1 >= 0. Likewise if b ∈ B1 then
b ⊥ a1. We proceed letting a2 and b2 attain

max{< a, b >, a ∈ A1, b ∈ B1, ||a|| = 1, ||b|| = 1}

and continue till we have exhausted A and B.

From (1) of (2.5), one has that the cosines of the principal angles between the
pair of subspaces A,B of V can also defined as the singular values of the orthogonal
projector PrAB (or equivalently PrBA). If α is a singular value, we call the pair
(a, b) ∈ (A × B) such that PrBAa = αb, PrABb = αa related singular vectors
(associated to α).

We underline the following relation between the angle and the principal angles
between a pair of subspaces of a real vector space V (see [19]).

Proposition 2.6. [13] Let Ap and Bq be a pair of subspaces of V n with 1 ≤ p ≤
q ≤ n. Let θ be the angle between the subspaces Ap and Bq and θ1, . . . , θp the set of
principal angles. Then

cos θ = cos θ1 · cos θ2 · . . . · cos θp.

In particular, if p = q, one has the well known result |det(G)| = cos θ1 ·cos θ2 · . . . ·
cos θp where G is the matrix representing the Projector PrBA w.r.t. some orthonormal
pair of bases.

Let recall the definition and some properties of isoclinic subspaces.



Definition 2.7. A pair of non oriented subspaces A and B of same dimension are
said to be isoclinic and the angle ϕ (0 ≤ ϕ ≤ π

2 ) is said to be angle of isoclinicity
between them if either of the following conditions hold:
1) the angle between any non-zero vector of one of the subspaces and the other
subspace is equal to ϕ;
2) GGt = cos2 ϕ Id for the matrix G =< ai, bj > of the orthogonal projector PA

B :
B → A with respect to any orthonormal basis {ai} of A and {bj} of B;
3) all principal angles between A and B equal ϕ.

Definition 2.8. We denote by IC2m the set of 2m-dimensional subspaces of V such
that, for any A ∈ S(Q), the pair (U,AU) is isoclinic. When we do not need to
specify the dimension we just use the notation IC and we call them simply isoclinic
subspaces.

The fact that we consider only even dimensions subspaces follows from the

Proposition 2.9. Let U be an odd dimension isoclinic subspace. Then U is a real
hermitian product subspace (r.h.p.s.). Namely IC2m+1 is the set of all and only the
real Hermitian product (2m+ 1)-dimension subspaces.

Proof. If U is a r.h.p.s. then by definition it is an isoclinic subspace. Viceversa U is
isoclinic and dimU = 2m+ 1, for any A ∈ S(Q), by the skew-symmetry of ωA one
(and then all) principal angle is necessarily equal to π/2.

Fixed an admissible basis (I, J,K) and, given U ∈ IC2m, we denote by θI , θJ , θK

the respective angles of isoclinicity. In [21] we introduced the following definitions.
If the pair (U, IU) (resp. (U, JU), resp. (U,KU)) is strictly orthogonal (i.e. if all
principal angles are π/2) we said that U is I-orthogonal (resp. J-orthogonal, resp.
K-orthogonal) and in general we spoke of single orthogonality (or 1-orthogonality).
When two (resp. three) of the above pair are strictly orthogonal we spoke of double
(resp. triple)-orthogonality. By saying that U is orthogonal (without specifying
the complex structures) we mean that at least one among θI , θJ , θK equals π/2.
Observe that only r.h.p. subspaces have a triple orthogonality. In particular in
this paper, the isoclinic subspaces we consider have no orthogonality unless they are
totally complex in which case they have a double orthogonality.

Let U be a subspace. Let fix an admissible basis H of Q, and let f : U × U ×
. . . × U → W some function where the codomain W is some vector space. If f is
constant on its domain, we will say that f is an invariant of U . If furthermore the
invariant f does not depend on the chosen hypercomplex basis H, we will say that
f is an intrinsic property of U .

Finally we recall the notion of Kähler angle which is defined in a real vector space
V endowed with a complex structure I.

Definition 2.10. Let (V 2n, I) be a real vector space endowed with a complex struc-
ture I. For any pairs of non parallel vectors X,Y ∈ V their Kähler angle is given
by

ΘI = arccos
< X, IY >

|X| |Y | sin X̂Y
= arccos

< X, IY >

mis (X ∧ Y )
. (8)



Then 0 ≤ ΘI ≤ π. It is straightforward to check that the Kähler angle is an
intrinsic property of the oriented 2-plane U = L(X,Y ). For this reason one speaks
of the Kähler angle of a 2-plane. The Kähler angle measures the deviation of a
2-plane from holomorphicity. For instance the Kähler angle of a r.h.p. subspace U
is ΘI(U) = π/2 and the one of a complex plane (U, I) is ΘI(U) ∈ {0, π}.

The cosine of the Kähler angle of the pair of 2-planes with opposite orientation
U and Ũ = L(Y,X) have opposite sign i.e. cosΘI(U) = − cosΘI(Ũ), then, if one
disregards the orientation of the 2-plane U , we can consider the absolute value of the
right hand side of equation (8) restricting the Kähler angle to the interval [0, π/2].
In this case the Kähler angle of the 2-plane U coincides with one of the two identical
principal angles, say θI(U), between the pairs of 2-plane U and IU (same as the
ones of the pair (Ũ , IŨ)) which are always isoclinic as one can immediately verify,
then

cos θI(U) = | cosΘI(U)|

and from (2.6), one has

cos(Û, IU) = cos(̂̃U, IŨ) = cos2 θI(U) = cos2 ΘI(U) =
< X, IY >2

mis2 (X ∧ Y )
. (9)

Generalizing the notion of Kähler angle, in an Hermitian quaternionic vector
space (V 4n,Q, <,>) we will speak of the A-Kähler angle of an oriented 2-plane U
with A ∈ S(Q) and denote it by ΘA(U).

In [21] we proved the following

Proposition 2.11. Let U ⊂ (V 4n,Q, <,>) be a 2 plane. The sum of the cosines of
the angles between the pairs (U, IU), (U, JU), (U,KU) is constant for any admissible
basis (I, J,K) of Q.

It follows that the quantity

cos2 ΘI(U)+cos2 ΘJ(U)+cos2 ΘK(U) = cos2 θI(U)+cos2 θJ(U)+cos2 θK(U) (10)

is an intrinsic property of a 2-plane.
Given a subspace U of an Hermitian quaternionic vector space and generalizing a

well known notion relative to an Hermitian complex vector space, for any A ∈ S(Q)
we will call A-Kähler form of U the skew-symmetric bilinear form

ωA|U : U × U → R
(X,Y ) 7→ < X,AY > .

It is well known that the A-Kähler form admits a standard form, namely w.r.t.
an orthonormal standard basis (X1, . . . , Xm) of the m-dimensional subspace U one
has

(ωA
ij) = (< Xi, AXj >) =

{
≥ 0 if i is odd and j = i+ 1,
0 otherwise,

for i ≤ j ≤ k.



A standard form determines some ωA-invariant subspaces UA
i .3 Such subspaces

are uniquely defined whereas the standard bases of ωA|UA
i

are not: namely, given
one of them, all others are obtained through an orthogonal transformations of UA

i

commuting with the complex structure A ∈ S(Q)). Observe that all such bases have
the same orientation.

The following definitions are specific of an Hermitian quaternionic vector space.

Definition 2.12. [3] The characteristic angle θ ∈ [0, π
2 ] of a pair of vector

L,M is the angle of the 1-dimensional quaternionic subspace they generate i.e. θ =
̂QL,QM where QL = L(L, IL, JL,KL), QM = L(M, IM, JM,KM) and (I, J,K)

is any admissible basis. It is given by

cos θ(L,M) =
[N (L ·M)]2

misL4 misM4
=

[< L,M >2 + < L, IM >2 + < L, JM >2 + < L,KM >2]2

mis4L mis4M

The Hermitian angle θh of a pair of vector L,M is

cos θh(L,M) =
|L ·M |

misL misM
=√

< L,M >2 + < L, IM >2 + < L, JM >2 + < L,KM >2

misL misM
.

Then
cos θ(L,M) = cos4 θh(L,M)

We conclude this preliminary section recalling that the group Sp(1) is the group
under multiplication of unitary quaternions. It is a Lie group whose Lie algebra
sp1 = Im H is a quaternionic structure on Hn.

Let (V 4n,Q, <,>) be an Hermitian quaternionic vector space. For any quater-
nion q ∈ Sp(1), let consider the unitary homothety in the H-module V ≃ R4n.

Rq : X 7→ Xq, X ∈ V.

To these transformations belong for instance the automorphisms I = R−i, J =
R−j ,K = R−k.

Proposition 2.13. [4] The unitary homotheties are rotations of V 4n that preserve
any quaternionic line. Moreover for any X ∈ V the angle X̂,Xq does not depend
on X and it is

cos X̂,Xq = Re(q)

The action of Sp(1) determines then an inclusion

λ : Sp(1) ↪→ SO(4n)
q 7→ Rq

(11)

3Using the same notation used in [20] we call ωA-invariant subspaces the T -invariant subspaces
of the endomorphism T of U represented by the same matrix of ωA.



We define Sp(n) to be the subgroup of SO(4n) commuting with λ(Sp(1)) i.e.
Sp(n) is the centralizer of λSp(1) in SO(4n).

For completeness we recall the following definition. Let consider in H-module V
the transformations T(A,q) : X 7→ AXq with A ∈ Sp(n), q ∈ Sp(1), X ∈ V . We
denote by Sp(n) · Sp(1) the group of these transformations.

The group Sp(n)·Sp(1) is the normalizer of λSp(1) in SO(4n) which is isomorphic
to the quotient Sp(n) ×Z2

Sp(1) where Z2 = {1,−1}. Note that Sp(1) · Sp(1) is
precisely SO(4), whereas for n ≥ 2 Sp(n) · Sp(1) is a maximal Lie subgroup of
SO(4n). Observe that Sp(n) · Sp(1) is not a subgroup of U(2n). For a deeper
understanding of the groups Sp(n) and Sp(n) · Sp(1) one can refer among others to
[12] and [7].

3 Sp(n)-orbits of complex and Σ-complex subspaces
in the real Grassmannians

3.1 Theorems about the Sp(n)-orbits of a generic subspace
Let (V 4n,Q, <,>)) be an Hermitian quaternionic vector space. Recalling the ex-
pression of the Hermitian product given in (3), in [20] we find the following charac-
terizations of the Sp(n)-orbits in the real Grassmannians GrR(m, 4n).

Theorem 3.1. [20] Let U and W be a pair of subspaces of real dimension m in the
H-module V 4n. Then there exists A ∈ Sp(n) such that AU = W iff there exist bases
BU = (X1, . . . , Xm) and BW = (Y1, . . . , Ym) of U and W respectively w.r.t. which
for the Hermitian products one has (Xi ·Xj) = (Yi · Yj), i = 1, . . . ,m for one and
hence any admissible basis of Q.

Let U ⊆ V be a subspace. For any A ∈ S(Q) we denoted by BA(U) the set
of the standard bases of ωA|U and by θA(U) the principal angles between the pair
(U,AU). Moreover, fixed an admissible basis (I, J,K), B(U) = {BI , BJ , BK} is the
set made of triples of bases of U with BI ∈ BI(U), BJ ∈ BJ(U), BK ∈ BK(U).

Necessary and sufficient conditions for the pair U,W to belong to the same Sp(n)-
orbit in the real Grassmannian are also stated in

Theorem 3.2. [20] Let (I, J,K) be an admissible basis of Q. The subspaces Um

and Wm of V are in the same Sp(n)-orbit iff

1. they share the same I, J,K-principal angles i.e.

θI(U) = θI(W ), θJ(U) = θJ(W ), θK(U) = θK(W )

for one and hence any hypercomplex basis (I, J,K) or equivalently the singular
values of the projectors
PrIU , P rJU , P rKU equals those of PrIW , P rJW , P rKW for one and hence any
admissible basis (I, J,K);

2. there exist ({X̃i}, {Ỹi}, {Z̃i}) ∈ B(U) and ({X̃ ′
i}, {Ỹ ′

i }, {Z̃ ′
i}) ∈ B(W ) such that

A = A′, B = B′ where

A = (< X̃i, Ỹj >), A′ = (< X̃ ′
i, Ỹ

′
j >), B = (< X̃i, Z̃j >),



B′ = (< X̃ ′
i, Z̃

′
j >).

The determination of the principal angles between a pair of subspaces S, T is
a well know problem solved by the singular value decomposition of the orthogonal
projector of S onto T . Here, for a chosen U ⊂ V we consider the pairs (U,AU), A ∈
S(Q) and denote by PrAU the orthogonal projector of U onto AU . In this case the
singular values of PrAU are always degenerate which implies that they have non-
unique singular vectors. In terms of the principal vectors of the pair (U,AU) we can
equivalently say that the principal vectors are never uniquely defined not even if U
is 2-dimensional. We do not consider the ambiguity in sign of the principal vectors
which is always existing also in dimension one.

Another way to obtain the principal angles and the associated principal vectors
between the pair of subspaces (U,AU), for any A ∈ S(Q), is through the standard
decompositions of the restriction to U of the A-Kähler skew-symmetric form ωA :
(X,Y ) 7→< X,AY >, X, Y ∈ U .

Recalling that a standard basis is an orthonormal basis w.r.t. which ωA|U assumes
standard form, in the following we will consider it ordered according to non increasing
value of the non-negative entries. Denoting by BA(U) the set of all such bases, one
has that any B ∈ BA(U) consists of the principal vectors of the pair (U,AU) (ordered
as just explained).

The problem to determine the Sp(n)-orbits turns therefore into the one of de-
termining the existence of such triple of bases. In [20] we set up a procedure to
determine a triple of canonical bases w.r.t. which one computes the matrices A
and B. Namely, fixed an admissible basis (I, J,K), a triple of canonical bases of
a subspace U is constituted by a triple of standard bases of ωI , ωJ , ωK that either
are uniquely determined by the procedure aforementioned or, if this is not the case,
nevertheless the associated matrices A,B are unique. We call them canonical ma-
trices and denote by CIJ and CIK . If the pair U,W belong the same Sp(n)-orbit,
the action of the group maps the canonical basis of U onto the ones of W . Therefore
the determination of such standard bases let us restrict the statement of Theorem
(3.2) to the canonical matrices leading to the

Theorem 3.3. [20] Let (I, J,K) be an admissible basis of Q. The subspaces U and
W of V are in the same Sp(n)-orbit iff Inv(U) = Inv(W ) where

Inv(U) = {θI(U), θJ(U), θK(U), CIJ , CIK}.

It is straightforward to verify that if Inv(U) = Inv(W ) w.r.t. the admissible
basis (I, J,K) then Inv(U) = Inv(W ) for any admissible basis.

3.2 The 2-dimensional complex subspace
Let (V 4n,Q, <,>) be an Hermitian quaternionic vector space. To study the Sp(n)-
orbits of a 2m-dimensional complex and Σ-complex subspace of V in the real Grass-
mannian GrR(2m, 4n) we will need the theory of the isoclinic subspaces developed
in [21]. In particular here we use some of the results obtained regarding the 4-
dimensional case as we will see that complex and Σ-complex subspaces admit an



orthogonal decomposition into 4-dimensional isoclinic addends (plus a totally com-
plex 2-dimensional subspace if m is odd). Furthermore such addends will be complex
by some compatible complex structure and Hermitian orthogonal in pairs.

In the following then we recall some results about isoclinic subspaces referring
for a more extensive analysis to [21].

Let initiate our study by considering a 2-dimensional I-complex subspace. By the
skew-symmetry of the A-Kähler form for any A ∈ S(Q), any 2-dimensional subspace
of U is isoclinic with AU . Therefore as a set one has that GR(2, 4n) = IC2.

In particular all 2-dimensional complex subspaces are totally complex. The in-
variants characterizing the Sp(n)-orbits in the Grassmannian of 2-planes are deter-
mined in [19] where we also studied the analogue problem for the group Sp(n)·Sp(1).

Fixed an admissible basis (I, J,K), let consider an oriented 2-dimensional sub-
space U ⊂ V generated by the oriented basis (M,L). In [19] we introduced the
purely imaginary quaternion

IM(U) =
Im(L ·M)

mis(L ∧M)
, L,M ∈ U. (12)

We showed that it is an intrinsic property of an oriented 2-plane U ⊂ (V 4n,Q, <,>)
i.e. it does not depend neither on the chosen generators L,M nor on the admissible
basis H of Q. Moreover Sp(n) preserves IM(U). In particular, if the pair L,M is
an orthonormal oriented basis of U , then IM(U) = L ·M . We called it Imaginary
measure of the 2-plane U . Disregarding the orientation of U and being (L,M)
some orthonormal basis, it is IM(U) = {±L ·M} i.e. it is the set made of a pair
of conjugated pure imaginary quaternions. We proved that

Theorem 3.4. [19] The imaginary measure IM(U) represents the full system of
invariants for the Sp(n)-orbits in the real Grassmannian of 2-planes GR(2, 4n) as
well as in G+

R (2, 4n) (the Grassmannian of the oriented 2-planes) i.e. a pair of 2-
planes (U,W ) of (V 4n,Q, <,>) are in the same Sp(n)-orbit iff IM(U) = IM(W ).

Let consider a triple of standard bases (X1, X2), (X1, Y2), (X1, Z2) with a com-
mon leading vector X1 of the non oriented 2-plane U . By definition one has that
cos θI =< X1, IX2 >, cos θJ =< X1, JY2 >, cos θK =< X1,KZ2 > are non neg-
ative, and computed ξ =< X2, Y2 >,χ =< X2, Z2 >, η =< Y2, Z2 >, where
(ξ, χ, η) ∈ {−1, 1} one has that the matrices CIJ and CIK w.r.t. the standard
bases (X1, X2), (X1, Y2)(X1, Z2) are given by

CIJ :

(
1 0
0 ξ

)
CIK :

(
1 0
0 χ

)
(13)

It is straightforward to verify that the pair (ξ, χ) is an invariant of U . Then any
triple of standard bases of ωI , ωJ , ωk with a common leading vector are canonical
bases of U whose canonical matrices are given in (13). Therefore, according to
Theorem (3.2), the pair (ξ, χ) together with the triple (θI , θJ , θK), determines the
Sp(n)-orbits of the (non oriented) 2-plane U .

This is accordance with the Theorem (3.4). In fact, If U has a triple orthogonality
then clearly IM(U) = 0. In this case any orthonormal basis is at the same time a



standard basis of ωI , ωJ , ωK which implies ξ = χ = 1. Else, suppose without lack
of generality that cos θI ̸= 0 and let (X1, X2) be an ωI -standard basis. Then

IM(U) = X1 ·X2 = ±(cos θI i+ ξ cos θJj + χ cos θKk).

Given a pair of 2-planes U,W with IM(U) = IM(W ), according to Theorem
(3.4), they are in the same orbit. Since they share the same pair (ξ, η) and the same
triple (θI , θJ , θK), they are in the same Sp(n)-orbit also according to Theorem (3.2).
Viceversa if they share the same pair (ξ, η) and the same triple (θI , θJ , θK) which
implies that they belong to the same Sp(n)-orbit according to Theorem (3.2) then
clearly IM(U) = IM(W ).

A 2-dimensional I-complex subspace is totally complex being clearly U ⊥ JU =
KU . Then for any admissible basis (I, J,K) one has (θI , θJ , θK) = (1, 0, 0). Fur-
thermore for X ∈ U the ωI -standard basis (X,−IX) can be considered a standard
basis of ωK′

centered on X for any K ′ ∈ I⊥. Then we assume ξ = χ = 1 and
w.r.t. any standard and canonical ωI -basis, for the canonical matrices one has
CIJ = CIK = Id. Then we can conclude affirming

Theorem 3.5. All and only the I-complex 2-dimensional subspaces of (V 4n,Q, <,>)
belong to one Sp(n)-orbit in GrR(2, 4n) or equivalently Sp(n) is transitive on the set
of the 2-dimensional I-complex subspaces of V .

We obtain the same result applying the Theorem (3.4) since if U is an I-complex
2-plane then IM(U) = ±i.

Furthermore, w.r.t. any ωI -standard basis, the matrix of the Hermitian product
is given by

HB(U) =

 0 i

−i 0

 . (14)

Then again the same results follows from Theorem (3.1).

For completeness we report the corresponding result appearing in [19] for the
group Sp(n) · Sp(1). There, we first extended to the Hermitian quaternionic vector
space V some notions and results of a vector space endowed with a complex structure
(see [11]). In [3], considering a 2-plane U ⊂ V spanned by the pair (L,M), it has
been introduced

∆(U) = N (IM(U)) =
N [Im(L ·M)]

mis2(L ∧M)
= (15)

=
< L, IM >2 + < L, JM >2 + < L,KM >2

mis2(L ∧M)
.

In particular, in case the basis L,M is orthonormal, ∆(U) = N (L ·M). It is a real
number belonging to the close interval [0, 1] and equals 1 iff dimUH = 1. It has
been proved that the quantity ∆(U) is an intrinsic property of a 2-plane (see (10))
preserved by the action of the group Sp(n) · Sp(1) on V .

We called the angle δ(U) ∈ [0, π/2] such that cos2 δ(U) = ∆(U) the character-
istic deviation of the real 2-plane U ⊂ V . Moreover

∆(U) = cos2δ(U) = cos(Û, IU) + cos(Û, JU) + cos(Û,KU)



where cos(Û, IU) (resp. cos(Û, JU), cos(Û,KU)) denotes the cosine of the angle
between the pairs of 2-planes (U, IU) (resp. (U, JU), (U,KU)).

In Proposition (2.11) we showed that such quantity does not depend on the
admissible basis (I, J,K) of Q.

Generalizing the definition of the characteristic deviation given for a 2-plane, in
([19]) we find the following

Definition 3.6. Let (X1, . . . , Xm) be an orthonormal basis of an m-dimensional
subspace U . Denote by Urs = L(Xr, Xs), r ̸= s = 1, . . . ,m. We call the quantity

∆(U) =

(
m
2

)−1 ∑
r<s

∆(Urs) (16)

the characteristic deviation of the subspace Um.

There we proved that the characteristic deviation is an intrinsic property of a
subspace U ⊂ V i.e. depends neither on the admissible basis of Q (it is a consequence
of Proposition (2.11)) nor on the chosen orthonormal basis of U which determines
the 2-planes Urs in (16). We proved the following

Theorem 3.7. [19] The characteristic deviation δ determines completely the orbit
of the 2-plane U ⊂ Hn in the real Grassmannian GR(2, 4n) under the action of
Sp(n) · Sp(1)

Since for of a 2-dimensional complex subspace U one has ∆(U) = 1 we can state
the

Corollary 3.8. The group Sp(n)·Sp(1) acts transitively on the set of 2-dimensional
complex subspaces.

3.3 Some results for isoclinic 4-dimensional subspaces
Let I ∈ S(Q). We now consider the case of a pure I-complex subspace (U, I) of the
Hermitian quaternionic vector space (V 4n,Q, <,>). In point (7) of the Claim (1.7)
we observed that, if K,K ′ ∈ I⊥∩S(Q) then KU = K ′U . Furthermore the subspace
KU is I-complex. We will deal first with a 4-dimensional pure complex subspace
since, we will show later, it is the fundamental brick to determine the Sp(n)-orbit
of The complex and Σ-complex subspaces.

As we will soon show, a 4-dimensional complex subspace U is isoclinic i.e. U ∈
IC4. The study of isoclinic subspaces is carried on in [21]. Here we briefly recall the
results we need in this paper referring to [21] both for proofs and a deeper analysis.

Proposition 3.9. [21] Let A ∈ S(Q). The pair (U,AU) of 4-dimensional subspaces
is isoclinic iff the matrix of ωA w.r.t. the orthonormal basis (X1, X2, X3, X4) has
the form

ωA :


0 a b c
−a 0 ±c ∓b
−b ∓c 0 ±a
−c ±b ∓a 0

 . (17)



It is a matrix with orthogonal rows and columns whose square norms evidently
equal the square cosine of the angle of isoclinicity θA between the pair (U,AU) i.e.

cos θA =
√
a2 + b2 + c2.

Then we proved the following result which is valid only in dimension 4 (besides
obviously in dimension 2 being all 2-planes isoclinic).

Proposition 3.10. [21] Let U be a 4 dimensional subspace and (I, J,K) an admis-
sible basis. Suppose the pairs (U, IU), (U, JU), (U,KU) are isoclinic and θI , θJ , θK

the respective angles of isoclinicity. Then for any A = α1I +α2J +α3K ∈ S(Q) the
pair (U,AU) is isoclinic and therefore U ∈ IC4. The angle of isoclinicity θA between
the pair (U,AU) is given by

cos2 θA = −1

4
Tr[(α1ω

I + α2ω
J + α3ω

K)2] = −1

4
Tr[(ωA)2] (18)

We recall that a 4-dimensional complex subspace is never orthogonal unless it is
totally complex (in which case it has a double orthogonality). Suppose that U is not
an orthogonal subspace (w.r.t. (I, J,K)) and let

X2 =
I−1PrIUX1

cos θI
, Y2 =

J−1PrJUX1

cos θJ
, Z2 =

K−1PrKUX1

cos θK
(19)

be the unitary vectors such that (X1, X2), (X1, Y2), (X1, Z2) are (orthonormal)
standard bases of the standard 2-planes U I , UJ , UK of ωI , ωJ , ωK respectively they
generate. The quantities < X1, IX2 >,< X1, JY2 >,< X1,KZ2 > are the (non neg-
ative) cosines of the principal angles of the pairs (U I , IU I), (UJ , JUJ), (UK ,KUK)
or equivalently the absolute value of the cosine of the I, J,K-Kähler angles of the
2-planes U I , UJ , UK respectively. Let (X1, X2, X3, X4) (resp. (X1, Y2, Y3, Y4), resp.
(X1, Z2, Z3, Z4)) be a standard basis of the forms ωI (resp. ωJ , resp. ωK ) with the
common leading vector X1. Let moreover denote by

ξ =< X2, Y2 >, χ =< X2, Z2 >, η =< Y2, Z2 >

where ξ, χ, η ∈ [−1, 1].

Proposition 3.11. [21] The cosines ξ =< X2, Y2 >, χ =< X2, Z2 >, η =<
Y2, Z2 > are invariants of U .

They are not an intrinsic properties of U i.e. they depend on the chosen admis-
sible basis (see [21]).

Definition 3.12. Let (I, J,K) be an admissible basis. The subspace U ∈ IC4 with
angles (θI , θI , θK) is said to be a 2-planes decomposable subspace (or simply 2-planes
decomposable) if it admits an orthogonal decomposition into a pair of 2-planes both
isoclinic with their I, J,K-images with angles (θI , θI , θK) respectively.

In a 2-plane decomposable subspace the values of ξ, χ, η = ξ·χ are all clearly equal
to ±1. In case of a 4 dimensional complex subspace U this happens iff U is totally



complex. It is straightforward to verify that if U ∈ IC4 is 2-plane decomposable
w.r.t (I, J,K) then it is 2-planes decomposable w.r.t. any admissible basis.

By using the invariants (ξ, χ, η), in [21] we determined the following equivalent
expression for the angle of isoclinicity

cos2 θA = α2
1 cos

2 θI + α2
2 cos

2 θJ + α2
3 cos

2 θK + 2ξα1α2 cos θ
I cos θJ

+ 2χα1α3 cos θ
I cos θK + 2ηα2α3 cos θ

J cos θK .
(20)

Proposition 3.13. [21] Let (I, J,K) be an admissible hypercomplex basis and U ∈
IC4 with angles of isoclinicity equal respectively to (θI , θJ , θK). Then S = cos2 θI +
cos2 θJ +cos2 θK is an intrinsic property of U not depending on the admissible basis.

The previous property is more general in the sense that it is valid for all subspaces
U ∈ IC regardless their dimension.

Dealing with a complex subspace U we have two possibilities: either U is not
totally complex in which case none among ξ, χ, η equals ±1 or U has a double
orthogonality, is 2-planes decomposable and in particular ξ = χ = η = 1.

In order to determine the canonical bases in this two cases, let consider first the
case that none among ξ, χ, η equals ±1. Let X1 ∈ U unitary and (X2, Y2, Z2) as
in (19). The subspaces L(X1, X2), L(X1, Y2), L(X1, Z2) are respectively standard
subspaces of ωI , ωJ , ωK restricted to U . Consider L(X2, Y2) and the vectors X4, Y4

of such 2-plane such that (X2, X4) and (Y2, Y4) are a pair of orthonormal basis
consistently oriented with (X2, Y2) (then < X2, Y4 >< 0).

Let then X3 = − I−1PrIUX4

cos θI be the unique vector such that < X3, IX4 >= cos θI

i.e. L(X3, X4) is an ωI -standard 2-plane and analogously Y3 = −J−1PrJUY4

cos θJ the
unique vector such that < Y3, JY4 >= cos θJ . Clearly the vectors X3 and Y3 belong
to U .

Analogously we consider L(X2, Z2) and the vectors X̃4, Z4 of such 2-plane such
that (X2, X̃4) and (Z2, Z4) are a pair of orthonormal basis consistently oriented with
the pair (X2, Z2) (then < X2, Z4 >< 0). Again, let X̃3 = − I−1PrIU X̃4

cos θI be the unique
vector such that < X̃3, IX̃4 >= cos θI i.e. L(X̃3, X̃4) is an ωI standard 2-plane and
Z3 = −K−1PrKUZ4

cos θK the unique vector such that < Z3,KZ4 >= cos θK i.e. L(Z3, Z4)

is an ωK standard 2-plane. The vectors X̃3 and Z3 belong to U . Proceeding in the
same way considering the oriented 2-plane L(Y2, Z2) we determine the pair (Ỹ4, Z̃4)
and consequently (Ỹ3, Z̃3). With the above choices in [21] we proved the following

Proposition 3.14. [21]
X3 = IPrIUX4

cos θI = JPrJUY4

cos θJ = Y3, X̃3 = IPrIU X̃4

cos θI = KPrKUZ4

cos θK = Z3,

Ỹ3 = JPrIU Ỹ4

cos θJ = KPrKU Z̃4

cos θK = Z̃3.

Definition 3.15. Let U ∈ IC4, (I, J,K) be an admissible basis and (θI , θJ , θK)
the respective angles of isoclinicity. In case none among ξ, χ, η is equal to ±1 (in
particular if U is neither orthogonal nor 2-planes decomposable), for any unitary
X1 ∈ U , that we call leading vector, we define the following standard bases of ωI |U



and ωJ |U respectively

{Xi} = {X1, X2 = I−1PrIUX1

cos θI , X3 = − I−1PrIUX4

cos θI , X4 = Y2−ξX2√
1−ξ2

},

{Yi} = {X1, Y2 = (J−1PrJUX1)
cos θJ , Y3 = X3 = − I−1PrJUY4

cos θJ , Y4 = −X2+ξY2√
1−ξ2

}

the ωI and ωJ -chains of U centered on X1, and the following standard bases of
ωI |U and ωK |U respectively

{X̃i} = {X1, X2 = I−1PrIUX1

cos θI , X̃3 = − I−1PrIU X̃4

cos θI , X̃4 = Z2−χX2√
1−χ2

},

{Zi} = {X1, Z2 = K−1PrKUX1

cos θK , Z3 = X̃3 = −K−1PrKUZ4

cos θK , Z4 = −X2+χZ2√
1−χ2

}

the ωI and ωK-chains of U centered on X1 and the following standard bases of
ωJ |U and ωK |U respectively.

{Ỹi} = {X1, Y2 = J−1PrJUX1

cos θJ , Ỹ3 = −J−1PrJU Ỹ4

cos θJ , Ỹ4 = Z2−ηY2√
1−η2

},

{Z̃i} = {X1, Z2 = K−1PrKUX1

cos θK , Z̃3 = Ỹ3 = −K−1PrKU Z̃4

cos θK , Z̃4 = −Y2+ηZ2√
1−η2

}

the ωJ and ωK-chains of U centered on X1. We denote by Σ(X1) the set of the six
chains with leading vector X1.

Clearly Σ(X1) is uniquely determined by the leading vector X1.
In case a pair among (ξ, χ, η) and hence all three pairs are equal to ±1, (namely

either η = ξ = χ = 1 or two of them are equal to -1 and the other to 1), we give the
following

Definition 3.16. In case U is a 2-planes decomposable subspace i.e. ξ, χ, η are all
equal to ±1 we define the following chains:

{Xi} = {X̃i}, {Yi} = (X1, ξX2, X3, ξX4) = {Ỹi},

{Zi} = (X1, χX2, X3, χX4) = (X1, ηY2, X3, ηY4) = {Z̃i}.

In particular if U has a double orthogonality (which happens in particular if U is
totally complex) or a triple orthogonality (iff U is a totally real subspace) one has

{Xi} = {X̃i} = {Yi} = {Ỹi} = {Zi} = {Z̃i}.

Clearly L(X3, X4) = L(X̃3, X̃4). The bases (X3, X4) and (X̃3, X̃4), being ωI -
standard bases, are consistently oriented. Let

C :

(
< X3, X̃3 > < X3, X̃4 >

< X4, X̃3 > < X4, X̃4 >

)
=

(
Γ −∆
∆ Γ

)
the orthogonal matrix of the change of basis. The orthogonal matrices CIJ = (<
Xi, Yj >) and CIK = (< Xi, Zj >) of the relative position of the basis {Xi} =



(X1, X2, X3, X4), {Yi} = (X1, Y2, X3, Y4) and {Zi} = (X1, Z2, X̃3, Z4) are given by

CIJ =


1 0 0 0

0 ξ 0 −
√
1− ξ2

0 0 1 0

0
√
1− ξ2 0 ξ

 ,

CIK =


1 0 0 0

0 χ 0 −
√
1− χ2

0 −∆
√
1− χ2 Γ −χ∆

0 Γ
√
1− χ2 ∆ χΓ.

 .

(21)

To determine Γ =< X3, X̃3 >, being < Y2, Z2 >=< Y2, X2 >< Z2, X2 > + <
Y2, X4 >< Z2, X4 >, we get η = ξχ +

√
1− ξ2

√
1− χ2 Γ. From the above expres-

sion, in case neither ξ nor χ equal 1, we get:

Γ =
η − ξχ√

1− ξ2
√
1− χ2

∈ [−1, 1]. (22)

Proposition 3.17. [21] If none among ξ, χ, η is equal to ±1 the value of Γ ∈ [−1, 1]
is given in (22). If instead at least one among ξ, χ, η is equal to ±1 then Γ = 1. In
particular this happens if U is orthogonal or is a 2-planes decomposable subspace. In
all cases, the pair (Γ,∆) is an invariant of U .

Proposition 3.18. [21] The matrices CIJ and CIK given in (21) w.r.t. the chains
{Xi}, {Yi} and {Xi}, {Zi} centered on a common leading vector are invariant of U .

Since if U is orthogonal one has (Γ,∆) = (1, 0), we can deduce the following

Corollary 3.19. In case of double or triple orthogonality one has CIJ = CIK = Id.

Following the definition given in [20], we give the

Definition 3.20. Let U ∈ IC4. Fixed an admissible basis (I, J,K), for any leading
vector X1, we call the chains {Xi}, {Yi}, {Zi} (resp. the matrices CIJ and CIK)
determined above canonical bases (resp. canonical matrices) of the subspaces
U ∈ IC4.

Clearly for any leading vector we have a different set of canonical bases. As ex-
plained beforehand, we denote them "canonical" since, by the invariance of (ξ, χ, η,∆),
the matrices CIJ and CIK are invariants of U ∈ IC4 having the unique forms given
in (21) regardless the leading vector X1. We summarize the results obtained in the
following

Proposition 3.21. [21] Fixed an admissible basis (I, J,K), to any U ∈ IC4 we can
associate the orthogonal canonical matrices CIJ and CIK given in (21) representing
the mutual position of the canonical (standard) bases {Xi}, {Yi}, {Zi} of ωI , ωJ , ωK .
Such matrices depend on the triple of invariants (ξ, χ, η) and on the sign of ∆ =<
X4, X̃3 >= ±

√
1− Γ2 where Γ = Γ(ξ, χ, η) is given in (22) if none among ξ, χ, η is

equal to ±1 else Γ = 1. The second case happens in particular if U is orthogonal or
a 2-planes decomposable subspace.



Then according to Theorem (3.2) we state the

Theorem 3.22. [21] The invariants (ξ, χ, η,∆) together with the angles (θI , θJ , θK)
determine the orbit of any U ∈ IC4. In particular if U is orthogonal or 2-planes
decomposable (in which case (Γ,∆) = (1, 0)) the first set reduces to the pair (ξ, χ).

A logical consequence of the above theorem is the following

Corollary 3.23. If the pair of subspaces (U,W ) share the same invariants
(ξ, χ, η,Γ,∆) and the same angles of isoclinicity (θI , θJ , θK) w.r.t. the admissible
basis (I, J,K) then they share the same invariants and angles w.r.t. any admissible
basis.

3.4 The 4-dimensional complex subspace

Proposition 3.24. Let (U, I) be a 4-dimensional complex subspace. Then U ∈ IC4.
Moreover for any pair X,Y ∈ U belonging to orthogonal I-complex 2-planes (i.e.
L(X, IX) ⊥ L(Y, IY ) ), the characteristic angle (i.e. the angle ̂QX,QY ) is an
invariant of U and equals the Euclidean angle of the pair (U,KU).

Proof. For any unitary pair X,Y ∈ U with Y ∈ L(X, IX)⊥, the set {X, IX, Y, IY }
is an orthonormal basis of U . Let (I, J,K) be an adapted basis. Being U = IU , the
pair (U, IU) is isoclinic with cosine of the angle of isoclinicity equal to 1. Moreover,
from point (7)of the Proposition (1.7), one has JU = KU . We compute the principal
angles θi ∈ [0, π/2], i = 1, . . . , 4 between the I-complex 4-planes U and KU recalling
that their square cosines are the eigenvalues of the symmetric matrix GGt where by
G we denote the Gram matrix of U × KU (matrix of the orthogonal projector
PrU : KU → U). Such matrix, w.r.t. the orthonormal basis (X, IX, Y, IY ) of U
and (KX, JX,KY, JY ) of KU , assumes the form

G =



KX JX KY JY

0 0 < X,KY > < X, JY >

0 0 < X, JY > − < X,KY >

− < X,KY > − < X, JY > 0 0

− < X, JY > < X,KY > 0 0


therefore, according to Proposition (3.9), the pair of 4-dimensional I-complex sub-
spaces (U,KU) is isoclinic and according to the Proposition (3.10) one has that



U ∈ IC4. Denoting by a =< X,KY > and b =< X, JY >, one has

GtG =



a2 + b2 0 0 0

0 a2 + b2 0 0

0 0 a2 + b2 0

0 0 0 a2 + b2


.

So, according to the Definition (2.7), the angle of isoclinicity θK of the complex
4-planes U and KU or equivalently one of the four identical principal angles is given
by

cos θK =
√

< X,KY >2 + < X, JY >2.

From Proposition (2.6) one has

cos θ1 · cos θ2 · cos θ3 · cos θ4 = cos ̂(U,KU) = (< X,KY >2 + < X, JY >2)2 (23)

which clearly depends only on U and KU . We deduce that (< X, JY >2 + <
X,KY >2) is an invariant of U for any I-orthonormal pair X,Y ∈ U (i.e. for any
Y ∈ L(X, IX)⊥ ∩ U). This implies that, for any I-orthonormal pair X,Y ∈ U ,
the characteristic angle θ = ̂QX,QY is an invariant of U as well. In fact, if X ′ =
AX, Y ′ = AY where A is an orthogonal map commuting with I in order to preserve
the I-orthogonality between X ′, Y ′,

cos ̂QX,QY = (< X,Y >2 + < X, IY >2 + < X, JY >2 + < X,KY >2)2

= (< X, JY >2 + < X,KY >2)2

= cos ̂(U,KU) = (< X ′, JY ′ >2 + < X ′,KY ′ >2)2 = cos ̂QX ′,QY ′.
(24)

Definition 3.25. Let (U, I) be a 4-dimensional I-complex subspace. We call I⊥-
Kähler angle of a 4-dimensional I-complex subspace U , and denote it by θI

⊥
(U),

the angle of isoclinicity of the pair (U,KU), for any K ∈ I⊥. One has

cos θI
⊥
(U) =

√
< X,KY >2 + < X, JY >2 = cos θJ = cos θK

where (I, J,K) is any adapted basis and (X,Y ) unitary with Y ∈ L(X, IX)⊥ ∩ U .
We denote such subspace by the triple (U, I, θI

⊥
).

Let consider the case that (U, I) is not totally complex i.e. θK ̸= π/2. it is
easily seen that given the unitary vectors X,Y of U with Y ∈ L(X, IX)⊥ ∩ U , and
denoted by a =< X,KY > and b =< X, JY >, the unitary vector Z2 ∈ U such
that X and KZ2 are associated left and right singular vectors of the pair (U,KU)
i.e. PrKUX = cos θKKZ2 and PrU (KZ2) = cos θKX is given by

Z2 =
a

cos θK
Y +

b

cos θK
IY. (25)



Clearly it does not depend on the orthonormal pair (Y, IY ); it belongs to the ωI -
standard I-complex 2-plane L(X, IX)⊥ = L(Y, IY ). We can then state the following

Corollary 3.26. Consider (U, I, θI
⊥ ̸= π/2). For any complex structure K ∈ Q

anticommuting with I, the orthogonal projection PrKUX ∈ KU of a unitary vector
X ∈ U is such that the unitary vectors (X,Z2 = K−1PrKUX

cos θK ) belong to strictly
orthogonal I-complex 2-planes.

Clearly (X,KZ2) are related principal vectors of the pair of 4-dimensional I-
complex subspaces (U,KU). Considering a different complex structure K̄ ∈ I⊥,
the vector Z2 = K̄−1PrK̄UX

cos θK changes inside the I-complex 2-plane L(X, IX)⊥ ∩
U . In particular one has that, for any adapted basis (I, J,K), the vector Y2 =
J−1PrKU (X)

cos θJ = −IZ2 and Z2 = K−1PrKUX
cos θK form an orthonormal basis of L(X, IX)⊥.

From the isoclinicity of U and KU any orthonormal basis in U is a basis of
singular vectors as well as any orthonormal basis in KU is a basis of right singular
vectors. Clearly to any such basis in U corresponds only one basis of right singular
vector in KU in order to have a pair of related bases ([10]).

With respect to these related bases, the Gram matrix G(U × KU) is diagonal
with non negative diagonal entries equal to cos θK = cos θJ = cos θI

⊥
. The existence

of such diagonal form is stated in [1] by Theorem (2.4) and follows from the theory
of the singular values decomposition applied to the matrix G.

In case instead (U, I) is totally complex, for any X ∈ U , one has that PrKUX =
0. Being the ωI standard 2-plane with leading vector X1 given by L(X1, X2 =
−IX1), in this case we assume that Z2 = X2 for any K ∈ I⊥

Observe that the cosine of the characteristic angle cos ̂QX,QY equals the square
cosine of the angle between the I-complex planes CX = L(X, IX) and C(KY ) =
L(KY, JY ) i.e. for any X,Y ∈ U such that CX ⊥ CY it is

cos ̂QX,QY = cos ̂(U,KU) = (< X,KY >2 + < X, JY >2)2 = cos2 ̂(CX,C(KY ))

for any adapted basis (I, J,K). In particular if (U, I) is totally complex one has that
cos ̂QX,QY = cos ̂(U,KU) = 0.

Recalling the definition of S introduced in Proposition (3.13), one has the fol-
lowing

Proposition 3.27. There exists a 1:1 correspondence between the characteristic
deviation ∆(U) of a 4-dimensional I-complex subspace (U, I, θI

⊥
) and the I⊥-Kähler

angle θI
⊥ ∈ [0, π/2]. It is given by

∆(U, I, θI
⊥
) =

2 cos2 θ + 1

3
=

cos2(U, IU) + cos2(U, JU) + cos2(U,KU)

3
=

S

3
(26)

Proof. It follows from (16). Consider the orthonormal basis (X,Z2, IX, IZ2) where



the pair (X,KZ2) are related left and right singular vectors of (U,KU). One has

∆(U, I, θI
⊥
) = 1

6 (∆(X,Z2)R +∆(X, IX)R +∆(X, IZ2)R
+∆(Z2, IX)R +∆(Z2, IZ2)R +∆(IX, IZ2)R) =

= 1
6 (< X,KZ2 >2 +1+ < X,KZ2 >2 + < X,KZ2 >2 +1

+ < X,KZ2 >2) = 2 cos2 θI⊥+1
3 = S

3

3.5 The associated plane of a 4-dimensional complex sub-
space

The standard form of the skew-symmetric form ωK : (X × Y ) →< X,KY > re-
stricted to the 4-dimensional pure subspace (U, I, θI

⊥
), for any K ∈ I⊥, determines

a decomposition U = U1

⊥
⊕ U2 into an orthogonal sum of a pair of K-orthogonal ωK-

standard 2-planes (i.e. U1 ⊥ KU2). If U1 = L(X1, X2) and U2 = L(X3, X4) where
the bases are orthonormal, clearly (X1, X2, X3, X4) and (KX2,−KX1,KX4,−KX3)
are bases of related left and right singular vectors of the projector PrKU : U → KU
or equivalently of related principal vectors of the pair of subspaces (U,KU).

Let now consider the case that the 4-dimensional pure subspace (U, I) is not
totally complex. In this case, from the Corollary (3.26) it is clearly U2 = IU1 and
consequently U1 ⊥ IU1. Then, if J completes the adapted basis (I, J,K), it is also
U1 ⊥ JU1. Therefore, for any K ′ ∈ I⊥, given an ωK′

-standard 2-plane U1 ⊂ U one

has that U = U1

⊥
⊕ IU12 is an ωK′

-standard decomposition of U into orthogonal
standard 2-planes.

Definition 3.28. We call associated plane to the I-complex 4-dimensional pure
subspace (U, I, θI

⊥ ̸= π/2) any 2-dimensional plane U ′ ⊂ U characterized by the
existence of an orthonormal basis, say (X,Z), such that the vectors (X,KZ) are a
pair of related principal vectors of the pair (U,KU) for some K ∈ I⊥.

If any such basis exists, all consistently oriented orthonormal bases have the same
property. Clearly < X,KZ >= cos θI

⊥
. Being U pure, one has that U ′ is necessarily

totally real. From the Corollary (3.26), Z(K) = K−1PrKUX
cos θK ∈ L(X, IX)⊥.

For any X ∈ U and K ∈ I⊥, all subspaces U ′(K) = L(X,Z(K)) where Z(K) =
K−1PrKUX

cos θK are associated plane of (U, I, θI
⊥ ̸= π/2). When we need to specify the

structure K ∈ S(Q), we denote the associated plane U ′ as U ′(K).

Proposition 3.29. Let (U, I, θI
⊥
) be a 4-dimensional I-complex subspace with I⊥-

Kähler angle θI
⊥ ̸= π/2. The 2-plane U ′ = L(X,Z) ⊂ U is an associated plane iff

any of the following equivalent conditions are satisfied.

1. There exists K ∈ I⊥ such that PrKU
U U ′ = KU ′.

Proof. If U ′(K) is an associated plane and (X,Z) an orthonormal basis such
that the pair (X,KZ) are related principal vectors of the pair (U,KU), then



PrKUX = cos θI
⊥
KZ and by the skew-symmetry of ωK one has PrKUZ =

cos θI
⊥
(−KX). Then PrKUU ′ = KU ′. Viceversa, if there exists some K ∈ I⊥

such that PrKUU ′ = KU ′, let (X,Y ) be an orthonormal basis of U ′. One
has that PrKUX =< X,KY > KY with clearly < X,KY >= ± cos θI

⊥
.

According to the sign, either (X,KY ) or (Y,KX) are a pair of related principal
vectors of the pair (U,KU).

2. (U, I, θI
⊥
) = U ′ ⊥

⊕ IU ′.

Proof. Let U ′ = U ′(K) = L(X,Z) be an associated plane of U . Clearly also
IU ′ = IU ′(K) is an associated plane. Furthermore, by the Corollary (3.26),
the vectors (X,Z, IX, IZ) form an orthonormal basis which implies that the

direct sum U = U ′ ⊕ IU ′ is orthogonal. Viceversa, let (U, I, θI
⊥
) = U ′ ⊥

⊕ IU ′.
By the Proposition (1.7) point (4), the 2-plane U ′ = L(X,Z) is totally real.
W.r.t. the orthonormal basis (X,Z, IX, IZ) one has PrKUX =< X, JZ >

Z+ < X,KZ > IZ then < X,K ′Z >= cos θI
⊥

for K ′ = 1

cos θI⊥ < X, JZ >
J+ < X,KZ > K.

3. There exists some K ∈ I⊥ w.r.t. which U ′ is a standard 2-plane of ωK |U .

Proof. If U ′(K) is an associated plane then, w.r.t. to the decomposition U =

U ′ ⊥
⊕ IU ′, ωK |U assumes standard form. Viceversa in the decomposition

U = U1 ⊕ IU1 associated to the form ωK |U , the standard 2-plane U1 is an
associated plane of (U, I, θI

⊥
) since PrKUU1 = KU1 and the conclusion follows

from point (1).

4. There exists K ∈ I⊥ such that the K-Kähler angle of U ′ equals the I⊥-Kähler
angle θI

⊥
.

Proof. By the isoclinicity of the pair (U,KU), the angle between any vector
X ∈ U and the subspace KU equals the I⊥-Kähler angle θI

⊥
. if U ′(K) is

an associated plane, from 1) PrKUU ′ = KU ′, then both singular values of
the projector PrKU restricted to U ′ equal cos θI

⊥
. Viceversa if there exists

K ∈ I⊥ such that the K-Kähler angle of U ′ equals θI
⊥

clearly PrKUU ′ = KU ′

i.e., from previous point (1), U ′ is an associated plane.

5. IM(U ′) = aj + bk where j, k ∈ i⊥ and orthonormal with a2 + b2 = cos2 θI
⊥

i.e. iff IM(U ′) ∈ i⊥, ∆(U ′) = a2 + b2 = cos2 θI
⊥
.

Proof. If U ′(K) = L(X,Z) is an associated plane of (U, I, θI
⊥
) with < X,KZ >=

cos θI
⊥
, then U ′ ⊥ IU ′, U ′ ⊥ JU ′ where J completes the adapted basis

(I, J,K).After identifying the adapted hypercomplex structures (I, J,K) of V



with (R−i, R−j , R−k) of H, one has IM(U ′) =< X, IZ > i+ < X, JZ > j+ <
X,KZ > k = cos θk. Using a different adapted basis the results follows.

Viceversa if U ′ ⊂ (U, I, θI
⊥
), with IM(U ′) = aj + bk w.r.t. the adapted basis

(I, J,K), one has that U ′ is an associated plane w.r.t. K ′ = aJ+bK, a2+b2 =

1. In fact < X,K ′Z >= cos θI
⊥
. In case < X,KZ >< 0 we consider the

orthonormal basis (X,−Z) or any other with the same orientation. From 3),
U ′(K ′) is an associated plane.

6. One and hence any orthonormal basis of U ′, say (X,Z) is I-orthogonal i.e.
Z ∈ L(X, IX)⊥.

Proof. If U ′(K) = L(X,Z) is an associated plane then for any X ∈ U ′

from the Corollary (3.26), one has Z = K−1PrKUX
cos θK ∈ L(X,−IX)⊥. Then

PrKU (U ′) = KU ′ and the conclusion follows from point (1). Viceversa if the
unitary basis (X,Z) is I-orthogonal, then (X,Z, IX, IZ) is an orthonormal
basis of U and (KX,KZ, JX, JZ) of KU w.r.t. which PrKUX =< X,KZ >

KZ+ < X, JZ > JZ with < X,KZ >2 + < X, JZ >2= cos2 θI
⊥
. Then

U ′ = U ′(K ′) with K ′ = 1

cos θI⊥ < X,KZ > K+ < X, JZ > J is an associated

plane since < X,K ′Z >= cos θI
⊥
.

We summarize the above characterizations of the associated subspace in the
following

Proposition 3.30. Let (U, I, θI
⊥ ̸= π/2) be a 4-dimensional pure I-complex sub-

space. Then, for any X ∈ U , and K ∈ I⊥ one has U = U1(K) ⊕ IU1(K) is direct
orthogonal sum of the uniquely defined K-orthogonal associated planes U1 = L(X,Z)

and U2 = IU1 = L(IZ, IX) where Z =
K−1PrKU

U (X)

cos θI⊥ . The I⊥-Kähler angle θI
⊥

is
the same as the K-Kähler angle ΘK(U1) = ΘK(U2) of the associated planes U1 and
U2 = IU1 i.e.

cos θI
⊥
= cosΘK(U1) =< X,KZ >=< IZ,KIX >= cosΘK(U2).

Moreover
IM(U1(K)) = IM(U2(K)) = cos θk = cos θI

⊥
.

Observe that the strictly orthogonal associated planes U = U1(K) and IU1 =
U2(K) are only K-orthogonal but clearly never I orthogonal (furthermore they are
not J orthogonal unless U is totally complex i.e. cos θK = 0). In particular they
are never orthogonal in Hermitian sense. Namely, since any totally real 2-plane
never belong to a quaternionic line but to a quaternionic 2-plane, we have that the
pair of quaternionic planes containing U1 and U2 (eventually coinciding) are never
orthogonal. We conclude this section with the

Proposition 3.31. Given (U, I, θI
⊥
) and the associated plane U1(K

′), K ′ ∈ I⊥

of (U, I, θI
⊥
), the A⊥-Kähler angle θA

⊥
of the A-complex subspace Ū = U1(K

′) ⊕
AU1(K

′) with A = aI + b(αJ + βK), a2 + b2 = α2 + β2 = 1 equals θI
⊥
.



Proof. It follows from the fact that for A ∈ K ′⊥, U1(K
′) is an associated plane

of Ū as well. In fact, let (I, J,K) be an adapted basis and consider for instance
U1(K). Being U1(K) ⊥ IU1(K) and U1(K) ⊥ JU1(K) one has that U1(K) ⊥
J ′U1(K), ∀J ′ ∈ L(I, J). Consequently PrKUU1(K) = KU1(K). Extending such
results to all K ′ ∈ L(J,K) the conclusion follows.

Then, given (U, I, θI
⊥
), for any A ∈ S(Q) we can build an A-complex 4-dimen-

sional subspace with θA
⊥
= θI

⊥
.

As an example, let consider I ′ = 1
3I + 2

3J + 2
3K. Then I ′ ∈ L(I, J ′) with

J ′ = 1
2
√

2
3

( 23J + 2
3K), In this case, a = 1

3 , b = 2
√
2

3 , α = β = 1√
2
. The complex

structure in L(J,K) orthogonal to J ′ is K ′ = 1
2
√

2
3

(− 2
3J + 2

3K) and consequently

Z̄2 = K′−1PrKUX1

cos θI⊥ = 1
2
√

2
3

( 23IZ + 2
3Z) = 1√

2
(IZ + Z) and the associated plane is

U(K ′) = L(X1, Z̄2). It is straightforward to verify that Ū = U1(K
′) ⊕ I ′U1(K

′) is
I ′-complex with I ′

⊥
= I⊥ i.e. Ū = (Ū , I ′, θI

⊥
). In fact, considering the adapted

basis (I ′, J̄ , K̄) with J̄ = 2
3I +

1
3J − 2

3K and K̄ = − 2
3I +

2
3J − 1

3K one has

< X, K̄Z̄2 > = < X, (− 2
3I +

2
3J − 1

3K)( 1√
2
(IZ + Z)) > 1

cos θI⊥ =

− 1√
2
< X1,KZ >= − 1√

2
cos θI

⊥

< X, J̄Z̄2 > = < X, ( 23I +
1
3J + − 2

3K)( 1√
2
(IZ + Z)) > 1

cos θI⊥ =

− 1√
2
< X1,KZ >= − 1√

2
cos θI

⊥

which implies that cos θI
′⊥

=
√
< X, J̄Z̄2 >2 + < X, K̄Z̄2 >2 = cos θI

⊥
.

What stated in Proposition (3.31) will be relevant when studying the Sp(n) ·
Sp(1)-orbits in the real Grassmannian. In an article that we will publish soon we
will show that the I⊥-Kähler angle θI

⊥
of an I-complex 4-dimensional subspace of

a quaternionic Hermitian vector space constitutes the full system of invariant for
its Sp(n) · Sp(1)-orbit. Then, from Proposition (3.31), we have that, given a 2-
plane U ′ with IM(U ′) = cos θk, which as stated in point (5) of the Proposition
(3.29) is an associated plane of U = U ′ ⊕ IU ′, all subspaces UA = U ′ ⊕ AU ′ with
A = aI + b(αJ + βK), a2 + b2 = α2 + β2 = 1 are in the same Sp(n) · Sp(1)-orbit.

3.6 Canonical bases and canonical matrices of a 4-dimensional
complex subspace

Let (U, I, θI
⊥
) be a 4-dimensional I-complex subspace and (I, J,K) an adapted

basis. Recall that JU = KU . Using the same notations that appear in [21], for
any unitary X1 ∈ U , we denote by X2 = I−1PrIUX, by Y2 = J−1PrJUX

cos θI⊥ and by

Z2 = K−1PrKUX

cos θI⊥ . Clearly X2 = −IX1. The pair (X1,−IX1) is an ωI -standard
basis of U1 = L(X,−IX). Clearly PrIUU1 = IU1 = U1. Furthermore we denote by
ξ =< X2, Y2 >, χ =< X2, Z2 >, η =< Y2, Z2 >. According to the Proposition
(3.11) such triple is an invariant of U .



Proposition 3.32. Let (U, I, θI
⊥
) be a 4-dimensional I-complex subspace not totally

complex and (I, J,K) an adapted basis. Choose X1 ∈ U unitary and let U1 =

L(X1,−IX1) be the ωI-standard plane. The vectors Y2 = J−1PrJUX

cos θI⊥ ∈ U⊥
1 , Z2 =

K−1PrKUX

cos θI⊥ ∈ U⊥
1 . Moreover one has ξ = χ = η = 0 and consequently

(X1, X2 = I−1PrIUX = −IX1, Y2 =
J−1PrJUX

cos θI⊥ , Z2 =
K−1PrKUX

cos θI⊥ )

is an orthonormal basis of U and, upon reordering, they form a triple of standard
bases {Xi}, {Yi}, {Zi} centered on X1 of respectively ωI |U , ωJ |U , ωK |U . Further-
more such triple are exactly the {Xi}, {Yi}, {Zi} chains centered on X1 defined in
(3.15). W.r.t. such chains the orthogonal matrices CIJ = < Xi, Yj >, CIK =
< Xi, Zj > are given in (28) and, as stated in the Proposition (3.18), are invariants
of (U, I, θI

⊥
). Furthermore they do not depend on the adapted basis.

Proof. From Corollary (3.26) one has that the unitary vectors Y2 = J−1PrJUX
cos θJ ∈ U⊥

1

and Z2 = K−1PrKUX
cos θK ∈ U⊥

1 which implies that ξ =< X2, Y2 >= 0 as well as
χ =< X2, Z2 >= 0. Moreover Y2 = J−1PrJUX1

cos θJ = J−1KX1 cos θK

cos θJ = −IZ2 which
implies that η =< Y2, Z2 >= 0. To obtain the chains {Xi}, {Yi}, {X̃i, {Zi}} it is
straightforward to verify that

X4 = Y2, Y4 = −X2, X̃4 = Z2, Z4 = −X2.

Furthermore
X̃3 = −I−1PrIU X̃4 = IX̃4 = IZ2.

Y2 =
J−1PrJUX1

cos θ
=

J−1PrKUX1

cos θ
= J−1KZ2 = −IZ2.

Then
∆ =< X4, X̃3 >= − < IZ2, IZ2 >= −1.

The chains {Xi}, {Yi}, {X̃i}, {Zi} of an I-complex subspace with leading vector
X1 ∈ U w.r.t. the adapted basis (I, J,K) are:

{Xi} = {X1, X2, X3, X4} = {X1,−IX1, Z2,−IZ2} = {X1, X2, Z2, Y2}
{Yi} = {X1, Y2, X3, Y4} = {X1,−IZ2, Z2, IX1} = {X1, Y2, Z2,−X2}
{X̃i} = {X1, X2, X̃3, X̃4} = {X1,−IX1, IZ2, Z2} = {X1, X2,−Y2, Z2}
{Zi} = {X1, Z2, X3, Z4} = {X1, Z2, IZ2, IX1} = {X1, Z2,−Y2,−X2}

(27)
Therefore the set (ξ, χ, η,Γ,∆) = (0, 0, 0, 0,−1) is an invariant (resp. an intrinsic

property) of an I-complex subspace (resp. quaternionic subspace).
In particular for a quaternionic subspace it is Y2 = −JX1 and Z2 = −KX1 then

{Xi} = {X1,−IX1,−KX1,−JX1}
{Yi} = {X1,−JX1,−KX1, IX1}
{X̃i} = {X1,−IX1, JX1,−KX1}
{Zi} = {X1,−KX1, JX1, IX1}



W.r.t. the canonical bases {Xi}, {Yi}, {Zi} the canonical matrices (21) of an
I-complex 4-dimensional subspace not totally complex are

CIJ = C ′
IK =


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

 , CIK =


1 0 0 0
0 0 0 −1
0 1 0 0
0 0 −1 0

 . (28)

In case the 4-dimensional I-complex subspace (U, I) is totally complex i.e. U =
(U, I, π/2) we are in a case of double orthogonality. In this case we can always assume
X2 = Y2 = Z2 (see [21]) and consequently ξ = χ = η = 1. From the Definition (3.16)
one has {Xi} = {Yi} = {X̃i} = {Zi} and consequently CIJ = CIK = Id as stated
in the Corollary (3.19). In this case clearly U is a 2-planes decomposable subspace.

Let denote by GrR
(I,θI⊥ )

(4, 4n) the subset of 4-dimensional I-complex subspaces

of V with I⊥-Kähler angle θI
⊥

of the Grassmannian GR(4, 4n).

Theorem 3.33. Let (U, I, θI
⊥
) ∈ GrR

(I,θI⊥ )
(4, 4n). The pair (I, θI

⊥
) composed by

the complex structure I ∈ S(Q) and the I⊥-Kähler angle θI
⊥

determines completely
the Sp(n)-orbit of U in the Grassmannian GrR(4, 4n) i.e. the group Sp(n) acts
transitively on GrR

(I,θI⊥ )
(4, 4n). In particular then all totally complex subspaces form

one Sp(n)-orbit in GrR(4, 4n).

Proof. The proof follows from the Theorem (3.22) and the Proposition (3.21). In
fact in case (U, I, θI

⊥ ̸= π/2) one bas (ξ, χ, η,∆) = (0, 0, 0,−1) and the angles of
isoclinicity are (0, I⊥, I⊥).

On the other hand, all totally 4 dimensional I-complex subspace are characterized
by (ξ, χ, η,∆) = (1, 1, 1, 0) and (θI , θJ , θK) = (0, π/2, π/2).

We terminate the analysis of the 4-dimensional complex subspaces with the

Proposition 3.34. Let U be a 4-dimensional complex subspace not totally complex.
Then ξ = χ = η = 0 only w.r.t. an adapted basis.

Proof. Let consider an I-complex subspace (U, I, θ) and a hypercomplex basis (I ′, J ′,K ′)
with I = α1I

′ + β1J
′ + γ1K

′. Then

I ′ = α1I + . . . , J ′ = β1I + . . . , K ′ = γ1I + . . .

and square cosine of the angles of isoclinicity cos2 θI
′
, cos2 θJ

′
, cos2 θK

′
between the

pairs (U, I ′U), (U, J ′U), (U,K ′U). From Proposition (3.35) we have

cos ̂(U, I ′U) = cos2 θI
′

= α2
1 sin

2 θ + cos2 θ

cos ̂(U, J ′U) = cos2 θJ
′

= β2
1 sin

2 θ + cos2 θ

cos ̂(U,K ′U) = cos2 θK
′

= γ2
1 sin

2 θ + cos2 θ.



We can verify that S = cos2 θI
′
+ cos2 θJ

′
+ cos2 θK

′
= 1 + 2 cos2 θ = 3∆(U).

From (20), one has

cos θI = 1 = α2
1(α

2
1 sin

2 θ + cos2 θ) + β2
1(β

2
1 sin

2 θ + cos2 θ) + γ2
1(γ

2
1 sin

2 θ + cos2 θ)+

2 < X2, Y2 > α1β1 cos θ
I′
cos θJ

′
+ 2 < X2, Z2 > α1γ1 cos θ

I′
cos θK

′
+

2 < Y2, Z2 > β1γ1 cos θ
J′
cos θK

′

Being

(α4
1 + β4

1 + γ4
1) sin

2 θ + (α2
1 + β2

1 + γ2
1) cos

2 θ = 1− 2 sin2 θ(α2
1β

2
1 + α2

1γ
2
1 + β2

1γ
2
1)

we get
2α1β1(α1β1 sin

2 θ− < X2, Y2 > cos θI
′
cos θJ

′
)+

+2α1γ1(α1γ1 sin
2 θ− < X2, Z2 > cos θI

′
cos θK

′
)+

+2β1γ1(β1γ1 sin
2 θ− < Y2, Z2 > cos θJ

′
cos θK

′
) = 0

Then ξ = χ = η = 0 if sin2 θ(α2
1β

2
1 + α2

1γ
2
1 + β2

1γ
2
1) = 0 that is either if cos θ = 1

which implies U quaternionic or if two among (α1, β1, γ1) are zero i.e. if I ′ = ±I or
J ′ = ±I or K ′ = ±I.

Applying the expression (20) for the determination of the angle of isoclinic of the
pair (U,AU) for A ∈ S(Q), we conclude this section with the following

Corollary 3.35. Given a 4-dimensional I-complex subspace (U, I, θI
⊥
) and the com-

patible complex structure A = αI + βJ + γK, the cosine of the angle of isoclinicity
θA between the pair of subspaces U and AU is equal to

cos θA =
√

α2 + (1− α2) cos2 θI⊥ . (29)

Then U is never orthogonal unless it is totally-complex.

3.7 Decomposition of a 2m-dimensional pure complex sub-
space

Given a 2m-dimensional complex subspace (U, I) ⊂ V , let consider the skew-sym-
metric form ωK : (X,Y ) →< X,KY > for K ∈ I ⊥ ∩S(Q) and denote by ωK |U its
restriction to U .

Proposition 3.36. Let (U, I) be a 2m-dimensional I-complex subspace and consider
the principal angles of the pair (U,KU). A principal angles θ ̸= π/2 has multiplicity
4k; if instead θ = π/2 its multiplicity is 2k.

Proof. Let (U, I) be a 2m-dimensional pure I-complex subspace. Consider first
the case that U is not totally complex and let Ui be a standard 2-plane of ωK |U
with the cosine of the angle of isoclinicity cos θK(Ui) of the pair (Ui,KUi) ̸= 0.
Observe that assuming on Ui the orientation induced by a standard basis one has
cos θK(Ui) = cosΘK(Ui).

Let (X,Z) be an ωK-standard basis of Ui and consider the I-complexification
Ũi = Ui ⊕ IUi ⊂ U . From the Proposition (3.29) the generators (X,Z, IX, IZ) are



orthonormal which implies that the above direct sum is orthogonal and that {Zi} =
(X,Z, IZ, IX) is the ωK-chain of Ũi centered on X. The conclusion follows observing
that for the angles of isoclinicity one has θK(Ui) =< X,KZ >=< IZ,KIX >=
θK(IUi).

In case a principal angle θ = π/2, let Ū the associated ωK-standard subspace.
From point (5) of the Claim (1.7), it is clearly totally I-complex. Then Ū is 2-planes
decomposable and its dimension is necessarily 2k.

Theorem 3.37. Any pure I-complex subspace (U2m, I) admits a decomposition into
an Hermitian orthogonal sum of 4-dimensional pure I-complex subspaces plus, in
case the dimension is not multiple of 4, an Hermitian orthogonal (totally) I-complex
2-plane.

Proof. From Proposition (3.36) one has that each principal angles θ ̸= π/2 be-
tween the pair (U,KU) has multiplicity 4k. Let denote by Ūi the ωK-invariant
4ki-dimensional subspaces associated to θi ̸= π/2 and denote by d the sum of their
dimensions. Any such subspace is I-complex. In fact by the uniqueness of such
invariant ωK-subspaces and from Proposition (3.36), one has the following decom-
position into 4-dimensional I-complex subspaces (Uij , I, θi)

Ūi =

ki⊕
j=1

(Uij , I, θi) =

ki⊕
j=1

L(Xij , Zij =
K−1PrKU

U Xij

cos θK
, IXij , IZij),

Xij ∈ Ū ∩ (

j−1⊕
p=1

Uip)
⊥.

The union of the bases above is an ωK-standard basis of the I-complex subspace Ūi.
Denoting by W =

⊕
Ūi, from Claim (1.7), we have that W is a d-dimensional

I-complex subspace, it admits a decomposition into 4-dimensional I-complex sub-
spaces and, w.r.t. the orthonormal bases given above, the form ωK |W assumes
standard form. The 4-dimensional complex addends of W are Hermitian orthogonal
as can be easily seen. In fact, if W1,W2 are a pair of such addends, one has that
W1 ⊥ W2 = IW2 and W1 ⊥ JW2 = KW2 i.e. WH

1 ⊥ WH
2 . In other words, all

different 4-dimensional I-complex addends Uij of the pure I-complex subspace U
belong to 8-dimensional quaternionic subspaces orthogonal in pairs.

Finally if 2m − d > 0, the (2m − d)-dimension subspace W ′ = W⊥ ∩ U is I-
complex being the orthogonal complement to a complex subspace in a complex space
(see claim (1.7)). In particular it is totally I-complex since the angle of isoclinicity
between the pair (W ′,KW ′) is π/2. It is easy to see that W ′ is Hermitian orthogonal
to W . Furthermore the ωI standard form restricted to W ′ determine a decomposition
of W ′ into Hermitian orthogonal 2-dimensional totally I-complex addends. Summing
them in pairs the conclusion follows.

Although the decomposition on the previous Theorem is unique only if all cos θi >
0 have multiplicity 4 and eventually present cos θi = 0 have multiplicity 2, we can
state the following corollary whose proof is straightforward.



Corollary 3.38. To a pure I-complex subspace (U4m, I) we can canonically asso-
ciate the vector θI⊥

= (θI
⊥

1 , . . . , θI
⊥

m ) where θI
⊥

i (ordered in increasing order) are the
I⊥-Kähler angles of the Hermitian orthogonal 4-dimensional I-complex subspaces of
Theorem (3.37). If dimU = 4m + 2, the angle θI

⊥

m+1 = π/2 is the K-Kähler angle
of an Hermitian orthogonal totally complex 2-plane.

The increasing order of the I⊥-Kähler angles in θ determines a corresponding
order of the relative Hermitian orthogonal 4-dimensional I-complex subspaces.

Definition 3.39. Let (U, I) be a 2m-dimensional I-complex subspace. We call the
vector θI⊥

= (θI
⊥

1 , . . . , θI
⊥

[m/2]) (θ = (θI
⊥

1 , . . . , θ
m/2I

⊥ , π/2) if m is odd) with θI
⊥

i

ordered in increasing order, the I⊥-Kähler multipleangle of the I-complex 2m-
dimensional subspace (U, I) that we will denote by (U2m, I,θI⊥

).

For any leading vector X1 = Y1 = Z1, we associate to any 4-dimensional complex
subspace the chains {Xi}, {Yi}, {Zi} of the Definition (3.15) and given in (27). We
recall that in case U is totally complex one has that {Xi} = {X̃i} = {Yi} = {Ỹi} =
{Zi} = {Z̃i}.

Definition 3.40. The unions of the chains {Xi} (resp. {Yi}, {Zi} of the 4-di-
mensional I-complex addends (Uij , I, θ

I⊥

i ) form the triple of the canonical bases of
(U2m, I,θI⊥

).

Proposition 3.41. Let (U2m, I,θI⊥
) a 2m-dimensional I-complex subspace. If m

is even, the canonical matrix CIJ (resp. CIK), w.r.t. the canonical bases, is given
by a diagonal block matrices with 4× 4-blocks given by the first (resp. the second) of
the (28) (plus an order 2 identity block if m is odd).

Proof. From Theorem (3.37) we have that U admits a standard decomposition into
4-dimensional I-complex subspaces. The addends are Hermitian orthogonal then
every orthogonal change of basis preserving such decomposition is represented by a
diagonal block matrix with 4 × 4 blocks. The conclusion follows from Proposition
(3.32).

Let us denote by GrR
(I,θI⊥ )

(2m, 4n) the set of 2m-dimensional pure I-complex

subspaces in (V 4n, <,>,Q) with I⊥-Kähler multipleangle θI⊥
.

Theorem 3.42. The group Sp(n) acts transitively on GrR
(I,θI⊥ )

(2m, 4n) i.e. the

pair (I,θI⊥
) composed by the complex structure I ∈ Q and the I⊥-Kähler multi-

pleangle θI⊥
of the I-complex subspace U determines completely its Sp(n)-orbit in

the Grassmannian GrR(2m, 4n).

Proof. The proof follows directly from Proposition (3.37). The Hermitian orthogo-
nality of all the addends of the decomposition of a 2m-dimensional pure I-complex
subspace (U2m, I,θI⊥

) there stated, allows us to deal separately with each addend
since the group Sp(n) preserves such orthogonality. Therefore the canonical matrices
w.r.t. the canonical bases given in the Definition (3.40) have the unique form stated



in the Proposition (3.41), then from the Theorem (3.3), the pair (I,θI⊥
) determines

the Sp(n)-orbits of U .
In case dimU is not multiple of 4, the last addend of the Hermitian orthogonal

decomposition stated in Proposition (3.37) is a totally I-complex 2-plane and the
conclusion follows from Proposition (3.5).

If U is A-complex with A ∈ S(Q) the triple (ξ, χ, η) ̸= (0, 0, 0) w.r.t. an the
admissible basis (I, J,K) as stated in the Proposition (3.34) unless A = ±I. Then
the canonical matrices never have the form stated in the Proposition (3.41).

3.8 Sp(n)-orbit of a Σ-complex subspace

In Proposition (1.14) we stated that a Σ-complex subspace U admits a unique de-
composition into Hermitian orthogonal sum of maximal pure complex subspaces by
different complex structure. Although in Theorem (3.37) we stated that the decom-
position of each Ii-complex 2m-dimensional addend into 4-dimensional Hermitian
orthogonal complex addends (if m ≥ 2) plus eventually an Hermitian orthogonal
totally complex plane (if m is odd) is in general not unique, we have that the I⊥i -
Kähler multipleangle is canonically defined. In this case, from Corollary (1.11),
we can determine the Sp(n)-orbit of U by determining separately the orbit of each
complex addend.

Let U =
⊕s

i=1(U
2mi
i , Ii,θ

I⊥
i ) where θI⊥

i = (θ
I⊥
i

1 , θ
I⊥
i

2 , . . . , θ
I⊥
i

[mi/2]
) is the I⊥i -

Kähler multipleangle of the Ii-complex subspace (Ui, Ii,θ
I⊥
i ) whose elements are the

θI
⊥
i -Kähler angles of the 4-dimensional Hermitian orthogonal addends (plus even-

tually an Hermitian orthogonal totally Ii-complex plane if mi is odd). Denote by
I =: (I1, I2, . . . , Is) the vector of the complex structures of the different complex
addends (Ui, Ii) ordered as stated in section (1.3) and by Θ := (θI⊥

1 , . . . ,θI⊥
s ) the

vector whose elements are the respective I⊥i -Kähler multipleangle of each Ui. We
can then state the

Theorem 3.43. The Sp(n)-orbit of the Σ-complex subspace U is completely deter-
mined by the pair (I,Θ).

Proof. Again the Hermitian orthogonality of the complex 4-dimensional subspaces
allows us to consider the orbit of each of them separately. The canonical matrices
of each (Ui, Ii), w.r.t. an adapted basis and w.r.t. a canonical basis have the form
stated in the Proposition (3.41). For any admissible basis and from Corollary (3.23)
the canonical matrices of the Σ-complex subspace U w.r.t. the union of the canonical
basis of each Ii-complex subspace have then a unique form. The conclusion follows
from the Theorem (3.3).

In particular this is true for any I1-complex subspace in which case I = I1 and
Θ = θI⊥

1 .
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Sp(n)-orbity w Grassmannianach podprzestrzeni zespolonych i Σ-złożonych
hermitowskiej kwaternionowej przestrzeni wektorowej

S t r e s z c z e n i e
Określamy niezmienniki charakteryzuja̧ce orbity Sp(n) w rzeczywistym Grass-

mannanie GrR(2k, 4n) złożonej 2k-wymiarowej i Σ-złożonej podprzestrzeni 4n -
wymiarowa hermitowska kwaternionowa przestrzeń wektorowa. Podprzestrzeń Σ-
złożona jest suma̧ ortogonalna̧ złożonych podprzestrzeni według różnej, aż do znaku,
zgodnej struktury złożonej. Wynik otrzymujemy rozpatruja̧c dwie główne cechy ta-
kich podprzestrzeni. Po pierwsze, każda taka podprzestrzeń dopuszcza rozkład na
hermitowska̧ sumȩ ortogonalna̧ 4-wymiarowych złożonych dodatków plus 2-wymia-
rowa̧ całkowicie złożona̧ podprzestrzeń, jeśli k jest nieparzyste, co oznacza, że kwa-
ternionizacja dodatków jest ortogonalna w parach. Po drugie, każdy 4-wymiarowy
dodatek złożony U jest podprzestrzenia̧ izokliniczna̧, tj. ka̧ty główne pary (U,AU)
sa̧ takie same dla każdej zgodnej struktury złożonej A. Używaja̧c tych własności

https://www.youtube.com/watch?v=W1vcMiz-EIg


określamy pełny zbiór niezmienników charakteryzuja̧cych Sp(n)-orbitȩ takich pod-
przestrzeni w GrR(2k, 4n).

Słowa kluczowe: Hermitowska struktura hiperzespolona, hermitowska struktura kwa-
ternionowa, zespolone podprzestrzenie, ka̧ty główne, ka̧ty Kählera
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