Zmiany w strukturze osadów piaszczystych i pylastych po 1000 cyklach zamarzania i rozmarzania – wstępne wyniki eksperymentu laboratoryjnego

Autor

  • Igor Śniady Uniwersytet im. Adama Mickiewicza

DOI:

https://doi.org/10.26485/AGL/2023/113/6

Słowa kluczowe:

permafrost, krioturbacje, cykle zamrażania-rozmrażania, eksperyment laboratoryjny, reorganizacja ziaren

Abstrakt

Eksperyment laboratoryjny obejmował analizę zmian zachodzących w strukturze osadów, które wynikają z reorganizacji ziaren osadów poddawanych powtarzającym się cyklom zamarzania i rozmarzania. Wykorzystano do tego urządzenie zamrażająco-rozmrażające pracujące w zakresie temperatur od –5°C do +10°C. W pięciu przeźroczystych cylindrach z pleksi umieszczono w kolejności od dna następujące osady: piasek gruboziarnisty, piasek drobnoziarnisty, pył i ponownie piasek drobnoziarnisty. W każdym z cylindrów stopień wilgotności osadów był inny. Obserwacje zmian przeprowadzono makroskopowo na podstawie fotograficznej dokumentacji cylindrów wykonanej przed rozpoczęciem eksperymentu oraz po 250, 500, 750 i 1000 cyklach zamarzania i rozmarzania. Wykazano, iż największą reorganizacją cechuje się osad pyłowy, a najmniejszą piasek gruboziarnisty. Ponadto, istotny wpływ na reorganizację ziaren miała wilgotność próbki. Największa liczba struktur powstała na granicach pomiędzy piaskiem drobnoziarnistym i pyłem w cylindrach o największej wilgotności

Bibliografia

Ballantyne C.K. 2018. Periglacial Geomorphology. Wiley-Blackwell, Chichester: 11-22.

Bockheim J.G., Tarnocai C. 1998. Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81 (3–4): 281-293. DOI: 10.1016/S0016-7061(97)00115-8

Bryan K. 1946. Cryopedology, the study of frozen ground and intensive frost-action, with sug-gestions on nomenclature. American Journal of Science 244 (9): 622-642

DOI: 10.2475/ajs.244.9.622

Corte A.E. 1963. Particle Sorting by Repeated Freezing and Thawing. Science 142(3591): 499-501. DOI:10.1126/science.142.3591.499

Everett K.R. 1987. Cryoturbation structures. W: Structural Geology and Tectonics. Encyclope-dia of Earth Science. Springer: 177-183. DOI: 10.1007/3-540-31080-0_25

Flerchinger G.N., Lehrsch G.A., McCool D.K. 2005. Freezing and thawing processes. W: D. Hillel (red.). Encyclopedia of Soils in the Environment, Elsevier: 104-110.

DOI: 10.1016/B0-12-348530-4/00365-9

Frauenfeld O.W., Zhang T., Barry R.G., Gilichinsky D. 2004. Interdecadal changes in seasonal freeze and thaw depths in Russia. Journal of Geophysical Research 109 (D5): 1-12.

DOI: 10.1029/2003JD004245

French H.M. 2017. The Periglacial Environment. Fourth Edition. Wiley, Chichester.

Górska-Pawliczuk A. 2017. Grunty wysadzinowe – wyzwanie dla drogownictwa. Magazyn Au-tostrady 5: 116-122.

Górska M.E., Woronko B. 2022. Multi-stage evolution of frost-induced microtextures on the surface of quartz grains – An experimental study. Permafrost and Periglacial Processes 33(4): 470-489.

DOI: 10.1002/ppp.2164

Górska M.E., Woronko B., Kossowski T.M., Pisarska-Jamroży M. 2022. Micro-scale frost-weathering simulation – Changes in grain-size composition and influencing factors. Catena 212: 106106.

DOI: 10.1016/j.catena.2022.106106

Górska M.E., Skolasińska K., Świątek S., Pisarska-Jamroży M. 2023a. Frost-induced changes in the structure of sediments – results after 500, 1000, 1500 experimental freeze-thaw cycles. Catena 232: 107355. DOI: 10.1016/j.catena.2023.107355

Górska M.E., Woronko B., Kossowski T.M. 2023b. Factors influencing the development of mi-crotextures on cold-climate aeolian quartz grains revealed by experimental frost action. Permafrost and Periglacial Processes 34(2): 259-283. DOI: 10.1002/ppp.2179

Haberkorn A., Kenner R., Noetzli J., Phillips M. 2021. Changes in Ground Temperature and Dynamics in Mountain Permafrost in the Swiss Alps. Frontiers in Earth Science 9.

DOI: 10.3389/feart.2021.626686

Hallet B., Walder J.S., Stubbs C.W. 1991. Weathering by segregation ice growth in micro-cracks at sustained subzero temperatures: verification from an experimental study using acoustic emission. Permafrost and Periglacial Processes 2(4): 283-300. DOI: 10.1002/ppp.3430020404

ISSMFE. 1989. International Society of Soil Mechanics and Foundation Engineering. Work re-port 1985–1989. W: Proceedings of International Symposium On Frost in Geotechnical En-gineering, 13–15.03.1989. VTT Symposium 94, Technical Committee on Frost, TC-8, Saariselka, Finlandia: 15-70.

Lai Y., Yang Y., Chang X. 2010. Strength criterion and elasto-plastic constitutive model of fro-zen silt in generalized plastic mechanics. International Journal of Plasticity 26(10): 1461-1484. DOI:10.1016/j.ijplas.2010.01.002010.01.007

Lewkowicz A.G., Bonnaventure P.P., Smith S.L., Kuntz Z. 2012. Spatial and thermal character-istics of mountain permafrost, northwest Canada. Geografiska Annaler: Series A, Physical Geography 94(2): 195-213. DOI: 10.1111/j.1468-0459.2012.00462.x

Liu J., Chang D., Yu Q. 2016. Influence of freeze-thaw cycles on mechanical properties of a silty sand. Engineering Geology 210: 23-32. DOI: 10.1016/j.enggeo.2016.05.019

Luetschg M., Lehning M., Haeberli W. 2008. A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps. Journal of Glaciology 54(187): 696-704.

DOI:10.3189/002214308786570881

Matsuoka N. 1995. Rock weathering process and landform development in the Sør Rondane Mountains, Antarctica. Geomorphology 12 (4): 323-339. DOI: 10.1016/0169-555X(95)00013-U

Matsuoka N. 2001. Direct observations of frost weathering in alpine bedrock. Earth Surface Processes and Landforms 26(6): 601-614. DOI: 10.1002/esp.208

Matsuoka N. 2005. Temporal and spatial variations in periglacial soil movements on alpine crest slopes. Permafrost and Periglacial Processes 30(1): 41-58. DOI: 10.1002/esp.1125

Matsuoka N. 2011. Climate and material controls on periglacial soil processes: Toward improv-ing peri-glacial climate indicators. Quaternary Research 75(2): 356-365. DOI: 10.1016/j.yqres.2010.12.014

Matsuoka N., Hirakawa K., Watanabe T., Moriwaki K. 1997. Monitoring of periglacial slope processes in the Swiss Alps: the first two years of frost shattering, heave and creep. Perma-frost and Periglacial Processes 8(2): 155-177.

DOI: 10.1002/(SICI)1099-1530(199732)8:2<155::AID-PPP248>3.0.CO;2-N

McFadden L.D., Eppes M.C., Gillespie A.R., Hallet B. 2005. Physical weathering in arid land-scapes due to diurnal variation in the direction of solar heating. Geological Society of Amer-ica Bulletin 117(1–2): 161-173. DOI: 10.1130/B25508.1

Mekonnen M.A., Riley W.J., Grant R.F., Romanovsky V.E. 2021. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Envi-ronmental Research Letters 16: 024008. DOI: 10.1088/1748-9326/abc444

Migoń P. 2012. Geomorfologia. Wyd. Naukowe PWN, Warszawa: 329-347.

Murton J.B., Coutard J.P., Lautridou J.P., Ozouf J.C., Robinson D.A., Williams R.B.G., Guil-lemet G., Simmons P. 2000. Experimental design for a pilot study on bedrock weathering near the permafrost table. Earth Surface Processes and Landforms 25(12): 1281-1294.

DOI: 10.1002/1096-9837(200011)25:12<1281::AID-ESP137>3.0.CO;2-U

Nicholson D.T. 2008. Rock control on microweathering of bedrock surfaces in a periglacial en-vironment. Geomorphology 101(4): 655-665. DOI: 10.1016/j.geomorph.2008.03.009

Pan Z., Yang G., Ye W., Liu H., Liang B., Yang Q., Li G. 2023. Effect of Freeze-Thaw Cycles and Initial Water Content on the Pore Structure and Mechanical Properties of Loess in Northern Shaanxi. Sustainability 15(14): 10937. DOI: 10.3390/su151410937

Schwamborn G., Schirrmeister L., Frütsch F., Diekmann B. 2012. Quartz Weathering In Freeze-Thaw Cycles: Experiment And Application To The El'gygytgyn Crater Lake Record For Tracing Siberian Permafrost History. Geografiska Annaler: Series A – Physical Geography 94(4): 481-499.

DOI: 10.1111/j.1468-0459.2012.00472.x

Szopińska M., Dymerski T., Polkowska Ż., Szumińska D., Wolska L. 2016a. The chemistry of river-lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part II. Spatial trends and possible sources of organic composition. Sedimentary Geology 340: 84-95.

DOI: 10.1016/j.sedgeo.2016.03.001

Szopińska M., Szumińska D., Polkowska Ż., Machowiak K., Lehmann S., Chmiel S. 2016b. The chemi-stry of river-lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part I. Analysis of ion and trace metal concentrations. Sedimentary Geology 340: 74-83.

DOI: 10.1016/j.sedgeo.2016.03.004

Świątek S., Belzyt S., Pisarska-Jamroży M., Woronko B. 2023. Sedimentary records of liquefac-tion: Implications from field studies. Journal of Geophysical Research: Earth Surface 128: e2023JF007152. DOI: 10.1029/2023JF007152

Tarnocai C. 2009. Arctic Permafrost Soils. W: R. Margesin (red.) Permafrost Soils. Soil Biology 16: 3-16. DOI: 10.1007/978-3-540-69371-0_1

Vandenberghe J. 1988. Cryoturbations. W: M.J. Clark (red.) Advances in Periglacial Geomor-phology. Wiley, Chichester: 179-198.

Vandenberghe J. 1992. Cryoturbations: A sediment structural analysis. Permafrost and Perigla-cial Processes 3(4): 343-352. DOI: 10.1002/ppp.3430030408

Vandenberghe J. 2013. Cryoturbation structures. Encyclopedia of Quaternary Science 3: 430-435.

Vandenberghe J. 2016. The reconstruction of past permafrost: recent results, presentday gaps and future challenges. W: F. Günther, A. Morgenstern (red.) XI International Conference On Permafrost – Book of Abstracts, 20-24.06.2016, Poczdam, Niemcy. Bibliothek Wissenschaftspark Albert Einstein: 338. DOI: 10.2312/GFZ.LIS.2016.001

Van Vliet‐Lanoë B. 1988. The significance of cryoturbation phenomena in environmental re-construction. Journal of Quaternary Science 3(1): 85-96. DOI: 10.1002/jqs.3390030110

Van Vliet-Lanoë B. 1991. Differential frost heave, load casting and convection: Converging mechanisms; a discussion of the origin of cryoturbations. Permafrost and Periglacial Pro-cesses 2 (2): 123-139. DOI: 10.1002/ppp.3430020207

Wang D., Ma W., Yonghong N., Chang X., Wen Z. 2007. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Region Science Technology 48(1): 34-43.

DOI: 10.1016/j.coldregions.2006.09.008

Wang T.L., Liu Y.J., Yan H., Xu L. 2015. An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles. Cold Regions Science and Techno-logy 112: 51-65.

DOI: 10.1016/j.coldregions.2015.01.004

Wentworth C.K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30(5): 377-392.

Wright J.S. 2000. The spalling of overgrowths during experimental freeze-thaw of a quartz sand-stone as a mechanism of quartz silt production. Micron 31(6): 631-638.

DOI: 10.1016/S0968-4328(99)00074-8

Xie S., Qu J., Xu X., Pang Y. 2017. Interactions between freeze-thaw actions, wind erosion des-ertification, and permafrost in the Qinghai–Tibet Plateau. Natural Hazards 85: 829-850.

DOI: 10.1007/s11069-016-2606-4

Zhai J., Zhang Z., Melnikov A., Zhang M., Yang L., Jin D. 2021. Experimental Study on the Effect of Freeze-Thaw Cycles on the Mineral Particle Fragmentation and Aggregation with Different Soil Types. Minerals 11: 913. DOI: 10.3390/min11090913

Zhou Z., Ma W., Zhang S., Mu Y., Li G. 2018. Effect of freeze-thaw cycles in mechanical be-haviors of frozen loess. Cold Region Science and Technology 146: 9-18.

DOI: 10.1016/j.coldregions.2017.11.011

Pobrania

Opublikowane

2024-01-08

Numer

Dział

Artykuły